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Synopsis
This paper represents the second part of a study of the electromagnetic energy-momentum 

tensor within a material medium. Similarly as in the first part, essentially a macroscopical point 
of view is adopted, and emphasis is laid upon the comparison with experiments, both in the 
case of static fields and in the case of time-varying fields within bodies at rest and in relativistic 
motion. For the main part the relative behaviour of Minkowski’s and Abraham’s tensors is 
studied, but some attention is also given to the tensors introduced by Einstein and Laub, de 
Groot and Suttorp, Beck and Marx et al. Deductive procedures are employed, characteristic 
effects are studied, both within media at rest and in motion, and some attention is given to a 
critical analysis of earlier treatments. Our main conclusion is that Minkowski’s and Abraham’s 
tensors are equivalent in the usual physical cases, while the remaining tensor expressions seem 
to run into conflict with experimental evidence.
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1. Introduction and Summary

In a previous paperh)—hereafter referred to as I—we discussed the 
application of Minkowski’s energy-momentum tensor in phenomenological 
electrodynamics. The medium was assumed to be homogeneous, transparent 
and usually also nondispersive. Since the essential differences between the 
various competing tensor forms are present also in the most simple media, 
the above restrictive assumptions were legitimate in relation to the main 
purpose of the investigation, namely to examine whether Minkowski’s tensor 
is appropriate to use in the most common and simple situations. And the 
affirmative answer to this question made it just convenient to restrict the 
treatment so as to incorporate Minkowski’s tensor only.

In the present paper we shall consider also other tensor forms, so let us 
first write down some expressions. The rest inertial frame of the medium 
shall be denoted by K°, while the inertial frame in which K° moves with the 
uniform velocity v, shall be denoted by K. Minkowski’s tensor reads

e M
°ik ~ -EJ)k- HtBk+iåik(E D+ H-B) (Ila)

oM
°4fc - i(E<H)k, .S'" = i(Dx B)t, S"- -i(E D+H B), (1.1b)

or, in covariant form,

= F^Hva -i0vvF*ßHaß (1.2)

(for notation, see I).
Perhaps the main reason why Minkowski’s tensor often has been rejected 

and instead replaced by some other tensor form is the asymmetry of the 
former, which is present even within isotropic media. The symmetry re
quirement is met by the following tensor, which we shall call Abraham’s 
tensor,

■s« - - + ■ D° + H° ■ B°) (1.3a)

- - i(E° • D° + H°- B° (1.3b)
1*
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(1.4)

covariant form can be written as

(1.5)

(1-6)

(1-7)

(1.8a)

(1.8b)

y (v, ic).
collaborators <3>.

* F. Beck(4) has also introduced a tensor which, however, in the case of a radiation field 
coincides with Marx’s radiation tensor. Therefore we shall not pay any special attention to 
this form in the following sections.

fhe energy density component was not given.
The last tensors we shall mention here are due to S. R. de Groot and

L. G. Suttorp(6). These authors have examined the problem from a purely

where n is the refractive index. We shall often be concerned with this tensor 
in the following chapters. Its

for all v between 1 and 4.* The covariant expression can be written

= C = X H»)k.

çSO — 1 ç.10 _ 1 cMO cSO _ çSO _ oAO

k'ik 2°^ ’ °1'4 ’n n

od _ cM

A. Einstein and J. Laub<5> have also examined the problem; by means of 
simple examples they constructed an expression for the force density in A0 
which corresponds to the following components of the energy-momentum

- 7Z,°Ä» + + W°2)

where x = (e// - 1 )/c2 = (n2 - l)/c2, Fa = FarVr and Vfl =
Another proposal was pul forward by G. Marx and

They examined a simple radiation field travelling through an isotropic 
medium, and came to the conclusion that Abraham’s tensor, describing the 
electromagnetic field, must be supplemented with a mechanical tensor to 
give the symmetrical “radiation” tensor S^IV describing the total system: 
radiation plus connected mechanical field. In A° the radiation tensor is 
given by 

(here given in A'0), although this symmetrized form of the stress tensor 
Så0 for anisotropic media seems to have been given first by H. Hertz<2>. 
When the body is isotropic, the force density in A reads

712 - 1 öSM0_____  ____ rAO _ fMO
C* - /4 >
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microscopical point of view, and published recently a series of papers on 
the subject. (See also I, section 7.) They give two tensor expressions, de
pendent on whether the total interaction between field and matter is taken 
into account or not. In the case of an isotropic medium their first proposal 
reads in K°

S^0 = -E?D°k-H^B°k+ ôik(\E02 + {B°^ (1.9a)

C = C = x C = -1(Eo2 + B°2), (1.9b)

where M° = B° - H°. It is apparent that for M° = 0, the components (1.8) 
of the Einstein-Laub tensor agree with the corresponding components of the 
de Groot-Suttorp tensor (1.9).

The second tensor expression proposed by de Groot and Suttorp was 
defined as the difference between the total energy-momentum tensors with 
and without external electromagnetic fields. This tensor thus corresponds to 
taking the whole interaction between field and matter into account. By 
omitting the variations of the material constants with density and temper
ature, as we mainly do throughout our work, we find that their second field 
tensor agrees with Abraham’s tensor within an isotropic body.

There exist also other proposals that have been put forward, and we shall 
have the opportunity to comment upon some of them in the detailed con
siderations later on. Mostly we shall be concerned with the relative merits of 
Abraham’s and Minkowski’s tensors, since these tensors, combined with 
their appropriate interpretations, are found to be both adequate and equi
valent in most of the simple physical situations considered.

Further introductions to the subject are given in the books by C. Møl- 
ler(7) and W. Pauli<8>, and in the review article by G. Marx<9).

The main task of the subsequent exposition can be conveniently divided 
into three parts. Firstly, we want to apply some deductive methods in order 
to see how the various tensors adapt themselves to the formalism. As in
dicated already in I it must be borne in mind that the power of this kind of 
method is restricted in the sense that the expressions one obtains are not 
unique. Secondly, we wish to examine the applicability of the various 
tensor forms to the description of definite phenomena. The description of 
the experiments is here a crucial point. Thirdly, we shall spend some effort 
to comment upon parts of the earlier literature. There has been published a 
large number of papers on the subject, which are often mutually contra
dictory and moreover scattered over a number of different journals. We find 
it therefore of importance to point out some crucial points in the various 
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derivations as an attempt to find the deeper reason why the results are 
seemingly incompatible.

Throughout this work we take a phenomenological point of view and 
refer only occasionally to the simple microscopical treatment in I. This is 
done for practical reasons, a thorough scrutiny of the microscopical aspects 
would require a separate treatment. However, we think there is also a 
reason of principle why it is sensible first to choose the macroscopical line 
of approach in order to obtain a satisfactory description of the physical 
phenomena: In the simple cases considered, the results obtained by means 
of these macroscopic or semi-macroscopic methods are both consistent and 
moreover fit the observed data in an excellent way. From a pragmatic point 
of view the macroscopical kind of method is therefore not only a possible 
kind of approach but in fact the appropriate one as a first step, and micro
scopical methods with their complicated formalism should properly be 
considered to represent a later stage of the development.

Let us now review the subsequent sections. Section 2 is devoted to an 
analysis of electrostatic fields. We considor again the variational method 
which was employed in section 3 of I, and show how Minkowski’s and 
Abraham’s tensors emerge from the formalism in an equivalent way. It is 
found that, as far as a dielectric body is surrounded by a vacuum or an 
isotropic liquid, no experiment testing electromagnetic forces or torques on 
the body can decide between these tensors. The two tensors correspond 
merely to different distributions of forces and torques throughout the body: 
According to Minkowski the torque is essentially a volume effect, described 
by the tensor asymmetry, while according to Abraham the torque is described 
completely in terms of the force density. We consider a typical example, in 
which Abraham’s torque naturally comes out as a surface effect.

In the remainder of section 2 we discuss to some extent the Einstein- 
Laub (or the de Groot-Suttorp) tensor. It is found that also in this case 
no force or torque experiments on a body surrounded by a vacuum or an 
isotropic fluid represent a critical test for the tensors in question. However, 
there is actually one effect which represents a critical test, namely the pres
sure increase in a dielectric liquid because of the field. In order to apply the 
theory to this case it is necessary to extend the variational method mentioned 
earlier (the Helmholtz method) so as to include also the electrostriction 
effect, although we are otherwise ignoring this effect in our work. S. S. 
Hakim and J. B. Higham have tested the pressure increase experimentally, 
and they found that the Helmholtz force describes the observed data very 
well. On the contrary, the pressure increase predicted by the Einstein-Laub 
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force (which is also called the Kelvin force) was found to be in disagree
ment with the experiment.

In section 3 we continue the consideration from I, section 6 concerning 
the propagation of an electromagnetic wave within an isotropic body at rest. 
By means of the semi-macroscopic method that we are adopting, and by 
taking the radiation pressure experiment due to R. V. Jones and J. C. S. 
Richards into account, we find that Abraham’s and Minkowski’s tensors are 
equivalent in the following sense: Abraham’s force density excites the con
stituent dipoles of the material and produces a mechanical momentum which 
travels together with the field. If we count this mechanical momentum 
together with Abraham’s momentum as a field momentum, we obtain 
Minkowski’s tensor. By considering the situation in the frame where the 
mean motion of the constituent particles vanishes we find that, in the case of 
an infinite medium, the energy-momentum tensor of the total system can be 
written as the sum of Abraham’s tensor and the mechanical tensor in the 
absence of fields.

We continue section 3 by discussing an example in which the boundary 
between two media is involved. Finally we consider alternative tensor forms, 
and find that the radiation pressure predicted by the radiation tensor is in 
disagreement with the Jones-Richards experiment.

In section 4 we discuss possibilities for torque experiments, especially 
when Minkowski’s or Abraham’s tensors are taken as field tensors. For a 
stationary optical wave in interaction with a dielectric body we find that the 
two tensors will always yield the same value for the torque. Thereafter we 
propose an experiment involving a low-frequency combination of electric 
and magnetic fields. This experiment should be appropriate for the detection 
of Abraham’s force, which is hidden in the case of optical fields. Finally it is 
concluded that the case of an optical field travelling through a dielectric body 
immersed in a dielectric liquid should represent a possible means for a 
further experimental check of the radiation tensor and the Einstein-Laub 
tensor.

Section 5 is devoted to a critical review of some parts of the earlier 
literature, especially those parts which seem to run into conflict with our 
own interpretations. We are otherwise commenting upon passages from 
earlier treatments also in our ordinary exposition of various topics, but there 
remain interesting arguments which cannot so naturally be dealt with in 
the ordinary treatment. We think such a critical analysis is desirable in a 
study of the present problem, since an important part of the task is just to 
clear up a situation which is confused by mutually contradictory opinions.
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For the main part we discuss gedanken experiments which have been put 
forward to support either Minkowski’s or Abraham’s tensor, and show how 
these situations are to be explained with the use of the formerly rejected 
alternative. In the remaining part of the section we mainly discuss some 
aspects of the Einstein-Laub paper.

In the subsequent sections we discuss topics connected with relativity, 
and, except for the last section, limit the consideration to the case of isotropic 
media. Section 6 is devoted to a study of the torque acting on a moving body 
when an electromagnetic wave is travelling within it. We first calculate 
Abraham’s and Minkowski’s torque expressions when the body is assumed 
infinitely extended, and show thereafter that both these expressions are 
relativistically consistent. In this context we draw into consideration an 
analogous situation encountered in relativistic mechanics: An elastic body 
subjected to stresses in its rest system may in other inertial systems require a 
torque in order to maintain steady motion. A similar situation is found to be 
present also here in electrodynamics: We require stady motion of matter 
plus field and find that there must then exist a rate of change of electro
magnetic momentum which is just equal to the previously calculated torque, 
with the opposite sign.

If the body is finite, we find that the most natural division of the total 
angular momentum into a field part and a mechanical part is obtained with 
the use of Abraham’s tensor for the field.

Section 7 contains a discussion of various relativistic phenomena. We 
begin by considering the velocity u = S/W of the energy in an optical wave. 
In section 9 of 1 we found that u transforms like a particle velocity if Min
kowski’s tensor is used. We now find that Abraham’s tensor cannot fulfil the 
transformation criterion due to the fact that this tensor does not describe the 
total travelling wave. We analyse the background for the transformation 
criterion, and give a rather general form of a tensor that fulfils it. The radi
ation tensor falls within this category.

Next we consider the relativistic centre of mass of a finite, but practically 
monochromatic, field. In section 12 of I we found that the various centres 
obtained with the use of Minkowski’s tensor in general do not coincide when 
(“onsidered simultaneously in one frame. Actually, by considering in the rest 
frame K° the centres of mass obtained by varying the direction and magnitude 
of the medium velocity, we found that they are located on a circular disk 
lying perpendicular to the inner angular momentum vector in K° with centre 
at the centre of mass in K°. Now the various centres of mass are found to 
behave in exactly the same way if the Abraham tensor or the radiation tensor 
is adopted.
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The Cerenkov effect is thereafter briefly analysed in the inertial frame 
in which the emitting particle is at rest. From a study of the momentum 
balance in this situation, I. Tamm has given preference to Minkowski’s 
tensor. We show how the momentum balance appears with the use of Abra
ham’s tensor. Section 7 is closed by some further remarks upon the literature.

In the last section we employ a variational method which implies the 
application of curvilinear coordinates as a formal remedy. For a closed 
system this method in general leads to a determination of the energy-momen
tum tensor, but the method is shown to leave a certain ambiguity here due to 
the fact that the Lagrangian leading to the electromagnetic field equations 
corresponds to a non-closed physical system. Section 8 is rather detailed, 
since this subject has caused some confusion.

Finally we consider again the Sagnac-type experiment due to C. V. Heer,
J. A. Little and J. R. Bupp, which was discussed in section 9 of 1. We find 
that this experiment, although it gives an excellent verification of the pre
dictions of macroscopic electrodynamics, does not represent a critical test 
for Minkowski’s tensor, such as it was originally claimed. In fact, the ex
periment is found to be explained equivalently also by Abraham’s tensor and 
the radiation tensor.

The Appendix gives in tabular form a summary of the behaviour of the 
various examined energy-momentum tensors in some physical situations.

2. Static Fields

We begin with an examination of the various tensors applied to the 
simplest physical case, namely the static fields. Actually, only electrostatic 
fields shall be considered since, for the simple case with linear inductive 
magnetization here considered, the corresponding results in the magneto
static case can be taken over by analogy. In this section we first consider 
the important point concerning the relative behaviour of Minkowski’s and 
Abraham’s tensors, and show how they in general lead to equivalent experi
mental results. Thereafter we consider various other tensor possibilities. 
Since all quantities are taken in the rest frame, the superscript zero on them 
shall simply be omitted.

Minkowski's versus Abraham's tensor

From (1.1a) and (1.3a) it is apparent that Minkowski’s and Abraham’s 
tensors are equal in the electrostatic case for isotropic media. We therefore 
generalize the situation and consider the same physical system as in I, 
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section 3, namely a dielectric, anisotropic medium containing an electric 
field which is produced by some external devices. The linear relation 
£) = Y]ikL)k is assumed to be valid. By varying the free energy

& = I I E DdV (2.1)

and equating - d^/dt to the rate of mechanical work | fudV exerted by the 
volume forces, we found in 1/ = fA, where

/4 = oE + i - ldt(EI)k - EkD). (2.2)

This corresponds to the stress tensor

= -WD^E^^E-D. (2.3)

By comparison with (1.3a) it is thus evident that we have obtained Abra
ham’s tensor. However, by invoking the “dipole model” and assuming the 
existence of a torque density r = D x E with a corresponding extra con

tribution J T • (d(pldf)dVto the rate of mechanical work (y being the rotational 

angle), we found instead Minkowski’s result

fM = qE+^D^^ (2.4)

< = -E^+^E-D. (2.5)

According to this description, the result is dependent explicity on the as
sumption of an extra torque density.

In order to make a more distinct comparison between the two tensor 
forms, it is convenient to reformulate the balance equation in terms of the 
rotational angle (p rather than the velocity u = ds/dt. Since f s = (r x f)'(p 
we have from (1,3.10,9) 

(2.6)

where f and r are as yet unspecified. As tp is arbitrary, we obtain

rx/+r = rx (qE + J DiDk^rjik) ■+ D x E (2.7)

This relation is fulfilled directly with Minkowski’s tensor, and only then. 
However, let us add the vanishing quantity
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- 1 J nl)^ Si dS,
cond

(2.8)

taken over the external conductors that produce the field, and let us combine

f(Z) <E)-<pdV~% I {EiD-n - E nD^SidS

cond

- J J- EkD)sdV - - 1 J[r x at(EDt - Ej-D)] ^</V.
(2.9)

Then (2.6) is equivalent to 

(p£ + | DiDkyrlik - ldk(El)k - EkD))]-cpdV 

= \ (r x f) • (pdV + fr-^dT,
(2.10)

and we obtain now /=/4, T = 0, i.e. Abraham’s tensor. In this case the 
torque is described in terms of the force density, while in the former case it 
was described by the asymmetry of the stress tensor. We must conclude 
that, as far as the dielectric body is surrounded by an isotropic medium 
(here vacuum), no unambigeous answer can be given for electrostatic systems. 
And this result is connected with the fact that the total body torque is the 
same for both tensors in this case: We may put the torque formula into the 
form

Ni - j(xtfk~ xkfi +Sik~ Ski)dy = ~ / (r x S™c)tdS, (2.11) 

surface

where Sni = Siknk. Thus the total torque can be evaluated from the vacuum 
values of the field, and Minkowski’s and Abraham’s tensors must yield the 
same result. Similarly, the total body force can also be put into a form 
which involves the vacuum field values only; by starting from the balance 
equation for total momentum we obtain readily for the total body force

- - J (2.12)

surface

in accordance with (2.11).
It should be emphasized that in order to obtain Minkowski’s tensor in 

the first procedure above, we had to take into account the existence of extra 
body torques with the density D x E. In the second procedure, however, 
the equivalence between Minkowski’s and Abraham’s tensors was demon- 
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strated simply by adding the vanishing term (2.8) in the energy balance. 
The additional assumption concerning the torque D x E will thus lead to an 
equivalent description with respect to observable effects for the whole 
dielectric body, only the distribution of torques and forces within the body 
will in general be different.

Il is clear that the above reasoning will not be changed if we assume that 
an isotropic, dielectric liquid tills the space between the body and the con
ductors, since Minkowski’s and Abraham’s tensors are equal in such a 
liquid.

The arguments hitherto have dealt with the dielectric system considered 
as a whole. If several insulators arc present between the conductors, then 
the torque acting on an individual insulator is still independent of which 
tensor we use. That follows immediately from the fad that we obtain ex
pressions like the last term in eq. (2.11) for each insulator in question.

An example
For the sake of illustration, let us consider again the same physical 

situation as in I, section 3: A dielectric sphere is located in a homogeneous 
electrostatic field such that the principal axes of the sphere coincide with the 
coordinate axes. The external field is given as E° = (E°, E%, E^). With the use 
of Minkowski’s tensor, we obtained in I for the single nonvanishing com
ponent of the torque

< - J (S"-S")dV - I (O X E)sdV-(p X £»)3, (2.13)

body body

where/) = 3V[(q - \)Ep(ex + 2), (e2 - l)F§/(£2 + 2),0],V being the volume 
of the sphere. According to (2.13), it is natural to interpret the effect as a vo
lume effect.

Let us now insert Abraham’s tensor into the torque formula (2.11) so as 
to obtain f f

- J (r X f>)3dV + J [r X (SJ„ - SDlsdS

body surface > 14)
J (rxS'^)3dS-(pxE«)3.

surface

The expressions (2.14) and (2.13) are equal, as they should be. But for 
Abraham’s tensor the volume effect vanishes, as is apparent also from the 
fact that f 4 = 0 in the homogeneous field in the body. In this case it is natural 
to interpret the effect as arising from the volume forces in the boundary layer.
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Other tensor forms
Let us now examine the various other tensor proposals mentioned in 

section 1. The radiation tensor due to Marx et al is delined for radiation 
fields within isotropic media only, and shall not be considered here. But 
there remains the Einstein-Laub tensor (1.8a) and the de Groot-Suttorp 
tensor (1.9a), which actually are seen to be equal in the electrostatic case. 
The force density is

fE = QE+(P-V)E, (2.15)

which is different from both (2.4) and (2.2). This force is also called the 
Kelvin force. The difference is expected to be connected with the fact that 
the force densities (2.2) and (2.4) were obtained from a variational principle 
based on the free energy in the form (2.1), which includes the interaction 
energy between field and matter. And this energy is not directly compatible 
with the energy 2Jp2dV following from (1.9b).

As regards the possibility for an experimental check of the force (2.15) 
we have first to point out that, as far as the dielectric body is surrounded by 
a vacuum, the total body force and torque obtained from SEk must both be 
equal to those obtained from the two tensors considered earlier. That this is 
so follows immediately from (2.11) and (2.12); the effects can be calculated 
directly from the vacuum tensor. We therefore next have to consider the 
situation where the body is surrounded by an isotropic liquid. There exist 
certainly electrostatic effects for which the influence of a dielectric liquid is 
essential; we may think of the rising of a liquid between two charged con
denser plates partly dipped into the liquid*10), or the force acting on a 
grounded metal sphere immersed in a liquid and surrounded by an in
homogeneous field.

However, none of these experiments represent critical tests for the validity 
of either Minkowski’s or Einstein’s force. This can be seen in a simple way 
by first noting that the force difference is a gradient term:

f* - ^(EP) + eE+lDtDt^a - fV(£-P)+/M (2.16)

Compared to Minkowski’s tensor, Einstein’s tensor thus gives rise to an 
extra isotropic pressure

pE - pM = lE-P. (2.17)

In accordance with (2.11) and (2.12) the total force and the total torque on 
the solid body are determined by the values of Sn in the liquid just outside 
the body. We have 
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5?f = (2.18)

but the effect from the last term in (2.18) (acting outwards) is just balanced 
by the extra pressure (2.17) which the liquid exerts on the solid. Hence 
Minkowski’s and Einstein’s tensors give the same values for the body force 
and torque. This compensation effect is the direct reason why a measurement 
of the total force on a metal sphere in the liquid represents no critical test: 
With Einstein’s tensor there are additional forces in the boundary layer of 
the sphere which just counterbalance the additional forces in the liquid 
tending to press the liquid into regions of higher field.*) If we suppose that 
the system producing the inhomogeneous electric field (for instance a small, 
charged metal sphere) is maintained at constant charge when it is surrounded 
by the dielectric liquid, we find that the total force FM = FE on the test sphere 
will drop in the ratio 1/e in comparison with the total force in the absence 
of the liquid, FM = (l/r)Fvac.

In the remaining example mentioned above, where two parallel con
denser plates are partly immersed in a dielectric liquid, the main reason for 
the equivalence is simply the compensating forces in the liquid itself: The 
total electromagnetic force in the liquid between the condenser plates which 
balances the gravity force at equilibrium is found by integrating the force 
density over a volume which starts in a domain of the liquid where the 
field vanishes and ends just above the surface where e = 1. Thus the effect 
from the gradient term in (2.16) vanishes, and a measurement of the height 
of the liquid between the condenser plates cannot serve as a means to deter
mine the validity of either fE or fM. This point has been emphasized also by
S. S. Hakim(11>.

[As stated above, Minkowski’s and Einstein’s tensors must be equivalent 
also with respect to the torque on the body. Actually, this latter kind of 
equivalence can be seen already by inspection of the expressions (2.5) and 
(1.8a). For the difference between the tensors is contained entirely in the 
terms multiplying ôik, and the torque effect from such a term is found 
simply by integrating -±E-D(r x n) and - ^E2(r x «), respectively, where 
the field variables refer to the fluid, over the body surface. If the body is a 
sphere, it follows immediately that this torque effect vanishes. Further, the 
same result also applies if the body does not have a spherical form: In this 
case we may lay a fictitious spherical surface in the fluid outside the body 
so that r x n = 0 on the surface, and from the stability of the fluid it follows 
that the torque exerted on the fictitious surface from the outside must be

We are as usual assuming a rapid but continuous variation of e across the boundary layers. 
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equal to the torque acting on the real body surface. In all cases the body 
torque is determined entirely by the first terms in (1.8a) or (2.5).]

While Minkowski’s and Einstein’s tensors thus lead to the same ex
pressions for forces and torques, we shall now see that there actually exists 
another effect which is measurable and which represents a critical test of the 
two tensors, namely the pressure increase in a dielectric non-polar liquid 
because of the field. Let us then first point out which electromagnetic forces 
may produce this excess fluid pressure. Minkowski’s force density is, in 
accordance with (2.4),

fM = (2.19)

and so the only pressure-producing term within the fluid, where q = 0, is 
the term - ^E2^ e. This term is of importance in the boundary region between 
two media. We shall, however, in the following confine ourselves to situ
ations where this term is of no importance, as for instance the situation 
where a charged condenser is completely immersed in the liquid.*) The 
condenser is moreover imagined placed horizontally, so that the gravity 
effect can be ignored.

The next kind of force which may yield an increased pressure effect is 
the electrostriction force. We have hitherto ignored the electrostriction in our 
work, it has usually no influence upon measurable quantities, but at this 
point it is indispensable. We then start again from the free energy (2.1) and 
carry through the variational procedure similarly as in sect. 3 of I, but now 
with the inclusion of terms showing the dependence of e on the mass density 
om. For definiteness we shall continue to call the expression (2.19) Min
kowski’s force, while the complete force expression shall be denoted as 
Helmholtz’ force

JH = ßE- j ). (2.20)

For the simple non-polar liquids here studied we may eliminate the mass 
density be means of the Clausius-Mossotti relation (e - l)/(e + 2) = const. 
om, and so (2.20) yields the following expression for the excess pressure, 
produced by the field:

s pH - p° = %(e - l)(e + T)E2, (2.21)

* However, even in such a case Ve will not be exactly equal to zero; e will increase some
what in the domain between the condenser plates if the fluid pressure here increases due to 
some other kind of force. With the simple non-polar liquids and moderate pressure changes 
that we shall be considering (Ap of the order of one atmosphere), the influence from Vt’ on the 
force is, however, negligible. See refs. 11, 12 or International Critical Tables.
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where p° is the fluid pressure when the field is turned off, thus corresponding 
to a slightly diminished mass density.

Finally we turn our attention to the Einstein force (2.16). Since Min
kowski’s force yields no pressure effect in the physical situations we consider, 
it follows immediately from (2.17) that

= pE - p° = I (e - 1)E2. (2.22)

It is clear from eqs. (2.21) and (2.22) that an experimental detection of 
the excess pressure represents a critical test of Helmholtz’ and Einstein’s 
force expressions. Now this kind of experiment has actually been per
formed by S. S. Hakim and J. B. Higham*12>. They used an ingenious method 
based on the fact that the excess pressure which the field produces gives rise 
to a slight compression of the liquid and so increases its refractive index. 
'I’his increase was determined experimentally by means of a Toepler- 
Schlieren optical technique, i.e. by a measurement of the angular de
flection of light rays passing through the liquid. The experimental results 
were found to be in agreement with the formula (2.21) within limits of 
accuracy of ± 5°/o, while they disagreed completely with the formula (2.22).

The Hakim-Higiiam experiment thus yields the important result that the 
fluid pressure p in the presence of the field can be identified with the Helm
holtz pressure pH. Hence we can draw the conclusion that the validity of 
the Helmholtz variational method used above, based on the free energy 
(2.1), is confirmed experimentally. It has sometimes been argued that one 
has the freedom to define the force density f and the pressure p arbitrarily, 
also in the electrostatic case, apart from the single restrictive condition that 
the relation f = \/p must be satisfied. We think however that the experiment 
clearly demonstrates that there is no room for this kind of arbitrariness in 
the electrostatic case within a dielectric liquid: By an integration of the force 
density over a volume element one must obtain the total electromagnetic force 
on that element which is compensated by the external pressure force acting 
on the surface. Since the excess pressure predicted by Helmholtz’ force 
expression has been verified experimentally, one should not introduce 
different definitions for pressure and force that would destroy this cor
respondence.

We also refer to another, theoretical, work*11) by Hakim in which the 
Helmholtz force is derived under essentially the same assumptions as 
those inherent in the usual derivation of the Clausius-Mossotti equation. 
Further, Hakim was able to show that the Einstein force runs into conflict 
with the Clausius-Mossotti equation.
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Since the electrostatic contribution to the force consists in a gradient term 
it follows immediately, as indicated above, that the electrostriction will 
yield no observable effect upon the electromagnetic force or torque acting on 
a test body. The gradient form implies that there is always a balance between 
two equally large and oppositely directed forces at the body surface. For 
this reason Helmholtz’ force can usually be replaced by Minkowski’s 
force, as we have done in our work.

It is instructive to give the expression for the total stress tensor Tik 
corresponding to both the liquid and the field :

Til = PH6ik~ Ed>t + ~emdeldçm') (2.23a)

- p°ôtt-EtD^ + iå^E D, (2.23b)

dtT,„ - 0. (2.23c)

These equations obviously do not apply to the domains in space wherein 
external bodies have been placed. Note that the validity of eq. (2.23b) is 
dependent on the fact that we have confined ourselves to systems for which 
the excess pressure is due entirely to the electrostrictive force. If on the other 
hand we had considered a situation in which also the term -^E2^e in the 
force had a pressure-producing effect (as for instance the situation where the 
vertical condenser plates are partly immersed in the liquid), the fluid pres
sure pH appearing in (2.23a) would no longer have been determined by the 
simple equation (2.21).

Now we have considered the pressure as a function of the zero-field 
pressure p° and the squared electric field E2. ft is however possible to regard 
the pressure as a function of the mass density om only, where the latter 
quantity includes also the contribution from the compressional potential 
energy set up by the electromagnetic forces. We can write the total free 
energy density Ftot as the sum of a mechanical part Fmech and an electro
magnetic part F = D .

Ftot = Fmech(Qm)+±E-D, (2.24)

where om = + /igm, g°m denoting the zero-field value and Aom denoting
the increase on account of the field. The pressure is then derived according 
to the familiar formula

ö(^Fmecb)
(2.25)

Mat.Fys.Medd.Dan.Vid.Selsk. 37, no. 13. 2
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Thus, although the amount of compressional potential energy transferred 
to the material from the electrostrictive forces is very small, it is nevertheless 
important to include also the electrostrictive contribution to Qm when deriving 
the pressure according to (2.25). Otherwise, if the expression (2.25) is 
calculated simply when the field is switched off, one will obtain the pressure 
p°. Obviously it is not the electric field per se which is of main importance; 
we may well assume that the field is absent in calculating (2.25), but then 
we have to imagine the presence of some other kind of external force which 
produces the same value of the density at each point.

We now turn to a comparison of the above results with those obtained 
by de Groot et al. As mentioned already in section 1, de Groot and Sut- 
torp(6) have introduced also a second form of the electromagnetic energy
momentum tensor, which is assumed to describe the whole interaction 
between matter and field. This tensor form is in agreement with Abraham’s 
expression when the latter is supplemented with the appropriate electro
strictive and magnetostrictive terms, and when the terms involving the der
ivatives of the material constants with respect to the temperature are omitted 
(these temperature-dependent terms being negligible in the case of non-polar 
media). We then first note the interesting result that the second tensor 
introduced by de Groot and Suttorp is in accordance with the Helm
holtz force in the electrostatic case, and thus is in agreement with our 
interpretation above. Now, since this tensor is assumed to describe the whole 
interaction between field and matter, it is constructed as the difference 
between the total (field plus matter) tensor in the presence of the field, and 
the total tensor in the absence of the field but at the same value of the density 
(and the temperature). This last statement is presumably to be understood 
so that the total mass density Qm (including the contribution from the com
pressional potential energy) is required to be kept constant, independent of 
the field, the authors thus implicitly presupposing the existence of some extra 
kind of force to maintain the compressional energy when the field is swit
ched off. By looking at the theory in this way we find that their mechanical 
stress tensor can be written as pHôik, the force balance thus reading/77 = VpH, 
in accordance with our result earlier obtained.

However, in spite of this formal agreement between the results it turns 
out that the two procedures are essentially different. (Apart from the already 
cited papers by de Groot and Suttorp, see also similar treatments by 
Mazur and de Groot*13' i?>.) Let us here therefore sketch some important 
parts of the mathematical formalism. The authors employ the following, 
rather unusual, balance equation for free energy per unit mass
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= -pd^ + E-d^P).
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(2.26)

Here we have omitted a temperature-dependent term. We shall not penetrate 
into the background of this equation, but mention that it is connected with 
the adoption of IE2 as the electrostatic energy density. Eq. (2.26) is inte
grated at constant om to give

Ft0t = Fmech^+ I£.p (2-27)

where Fmech is the free energy density in the absence of the field, but at the 
same mass density. The authors then invoke eqs. (2.26) and (2.27) to 
calculate the pressure

P = (2.28)

This pressure p is now identified with the Einstein pressure pE and the 
expression (2.28) is inserted into the force balance fE = VpE■ The force fE 
can be expressed in terms of the field quantities by means of eqs. (2.16) and 
(2.19), and by comparing with the expression (2.20) for the Helmholtz 
force one sees that

f- - f« + ^{E P-E2emdL\. (2.29)
\ dQm/

Thus, by using eqs. (2.29) and (2.28) the authors obtain that the force 
balance fE = V//; can alternatively be written fH = \7pH, as previously 
mentioned. Correspondingly, the identification of the pressure p in eq. 
(2.28) with the Einstein pressure pE is in accordance with eq. (2.29).

At this stage it should be clear what in reality distinguishes the method 
employed by de Groot et al from the method we have employed earlier in 
this section. First, the expression (2.27) for the free energy density differs 
essentially from the expression (2.24) and hence does not correspond to 
the free energy density i-E D for the field. The latter density was used in the 
variational principle based on eq. (2.1), and it must be equal to the work 
exerted per unit volume in building up the field. Secondly, a relation of the 
form (2.28) is incompatible with our earlier interpretation according to 
which the pressure is a function of the total mass density alone, the field 
playing only a secondary role in establishing the compressional force. 
Instead of calculating the pressure as a partial derivative of the type (2.28) 
whose physical meaning does not appear quite clear to us, we have instead 

2* 
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employed the usual method according to which the pressure gradient and 
the electromagnetic force emerge from a variational principle wherein 
respectively the mechanical free energy density Fmech and the field free 
energy density F = \E D are varied. Thus, after variation of the mechanical 
part, the fluid pressure can be written simply as a partial derivative in the 
form (2.25), but this quantity is not explicitly dependent on the field. If we 
instead had inserted the total free energy density Ftot into the variational 
integral we would have obtained the resulting force density equal to zero, in 
accordance with the fact that the system consisting of matter plus field is a 
closed system.

The results obtained in this section can be summarized as follows : The 
variational method based on the energy (2.1) can lead both to Minkowski’s 
and Abraham’s tensors, and as far as the dielectric body is surrounded by 
an isotropic medium (vacuum or liquid), no experiments testing forces or 
torques can decide between them. These tensors correspond only to different 
distributions of forces and torques throughout the body. Within an isotropic 
medium the tensors become equal, and the increased pressure effect predicted 
in a dielectric liquid (including the electrostriction effect) has been verified 
experimentally.

The other proposal considered, but forward among others by Einstein 
and Laub (as well as de Groot and Suttorp in their first proposal), is 
different from the above two expressions even in the isotropic case. The 
extra pressure effect predicted by this tensor does not agree with experiment.

As usual, we have in this section confined ourselves to the macroscopic 
approach. It seems to be a rather common feature, however, that the micro
scopic treatments that have been given in this field favour the force expression 
which we have called Einstein’s force. Apart form the already cited papers 
by Mazur and de Groot(13), de Groot and Suttorp<6\ we may refer also 
to a paper by Kaufman*14), in which similar conclusions have been drawn. 
We shall not, however, go into further considerations at this point.

3. Consideration of an Electromagnetic Wave in an Isotropic 
Body at Rest

We now turn our attention to simple time-varying fields within a dielectric 
medium at rest. In the first part of the section we rely upon the semi-micro
scopical arguments from I, section 6 to point out the connection between 
Minkowski’s and Abraham’s tensors for a plane wave travelling within an 
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isotropie and homogeneous body; thereafter the considerations are illustrated 
by an example where also boundaries are involved. Finally, we examine 
alternative tensor proposals.

W e recall the essential parts of the procedure for constructing the energy
momentum tensor in I : The energy density was taken to be the sum of the 
electrostatic and magnetostatic energy densities; correspondingly, the stress 
tensor was constructed as the sum of the electrostatic and magnetostatic 
stress tensors derived by the usual energy variational method. From the 
energy density in the form IV = \(ED + HB) and from the fact that the 
four-component of force, vanishes within the dielectric, we deduced the 
expression S = c(Ex H) for the energy flux. Assuming the relation S’ = c2g, 
expressing Planck’s principle of inertia of energy, to be valid also for the 
electromagnetic field, we further found the momentum density ^ = (l/c) 
(E x H).

In accordance with (1.3) it is apparent that these components form 
Abraham’s tensor. If the remaining part of the total system (the mechanical 
part) is described by an energy-momentum tensor U^v, the present division 
of the total system into electromagnetic and mechanical parts may be ex
pressed by the equation

(3.1) 

The covariant form of S^v is given in (1.5). Abraham’s tensor has been 
advocated by many authors, and we also agree that it represents a fully 
adequate description of phenomenological electrodynamics. It must be 
borne in mind that we are neglecting electrostriction and magnetostriction 
effects; these effects would lead to additional terms in the tensor components. 
Actually we find, in the time-dependent case as well as in the static case, 
that if Abraham’s tensor is augmented by the electrostrictive and magneto
strictive terms the resulting expression is just equal to the second tensor 
expression given by de Groot and Suttorp (apart from terms involving 
the derivatives of the material constants with respect to temperature).

It must be borne in mind however, that the present problem is to some 
extent a matter of convenience, and the question arises whether there are 
alternative tensors which can equally well be justified on the basis of (3.1). 
Our next task is thus to examine the effect induced in the mechanical tensor 

on account of the force ffi. According to (1.4) this force has only one 
nonvanishing component, namely a fluctuating component in the direction of 
propagation of the plane wave. We take this direction as the x-direction; if 
the velocity of the constituent dipoles in the x-direction is denoted by tq,
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(3.2)
c

(3.3)

(3.4)

and if rTflv is the energy-momentum tensor of the total system the mechanical 
part is described by

^.mech

we found in I that the contributions to the components Uik and f44 because 
of this velocity component are at most of the order (iijc)2, which are negligible 
quantities. On the other hand, the components Ul4 = U41 = icg™ech = icQmii1 
are of the first order in ujc and may thus be appreciable. By invoking 
the Jones-Richards experiment*15* we actually determined the induced me
chanical momentum density as

n2 - 1
(E x H)

d SM = 0 > V [IV u ’

divergence-free tensor T^v is

in the case of an optical wave. This mechanical momentum runs always 
together with the field. Simply by including (3.2) in the field momentum 
density we obtained Minkowski’s value gM = (l/c)(Z) x B). This is the total 
electromagnetic and mechanical momentum density associated with a pro
pagating optical wave. Further, this interpretation means that the matter is 
set into a small motion with the velocity u1 when the field passes through it; 
the flux of mechanical energy 5™ech = - icU41 = - icU14 being present be
cause of this motion must naturally be included in the mechanical tensor. 
Note that /4 = 0 (fi u4 being negligible), so that dv U4v = 0.

If we suppose that the optical wave travels within an infinite medium, 
so that there are no forces in the boundary layers to cause stresses in the 
material, the components of the stress tensor are equal Io their values at 
zero field. In more general cases, the components Uik have to describe the 
elastic stresses which are set up because of the electromagnetic forces at the 
boundaries.

Further considerations on these topics are contained in I, section 6, but 
we shall here write down the tensor scheme which pertains to Minkowski’s 
tensor: The field is described by

T = ‘ [IV /IV

where F44 = — gmc2. The symmetrical and
thus divided into two asymmetrical but divergence-free tensors describing 
the electromagnetic and mechanical parts of the system. We emphasize 
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again that the reason why this kind of division is convenient lies entirely in 
experience. Further, although the division of course does not affect the 
angular momentum conservation law for the total system, the asymmetry of 
the partial tensors gives rise to unfamiliar aspects for the angular momenta 
of the two subsystems.

It is instructive to consider the system not only in the frame K°—the 
original rest frame—but also in the frame K' in which the mean velocity of 
the matter is zero. In this frame all tensor components retain their old values 
from K°, except for the components U4k = Uk4 whose average values are 
zero. Apart from fluctuating terms the above two kinds of splitting then 
become equivalent: The field is described by the same Abraham tensor as 
in the frame K°, and the remaining matter system is described by the tensor 
U' which, in the case of an infinite medium, can be taken to be equal to the 
energy—momentum tensor at zero field. If the medium is finite, the compo
nents Uik must describe also any mechanical stresses that may arise. With 
the omission of electrostrictive and magnetostrictive terms we thus obtain in 
the frame K' a division of the total energy-momentum tensor into an electro
magnetic and a mechanical part in a way which is in agreement with the 
division that has been proposed by several other authors(6> 16> 17> in the rest 
frame. The new element of our analysis is essentially that this kind of division 
is interpreted not to run into conflict with Minkowski’s tensor, due to the 
fact that the experiments lead us to distinguish between the original rest 
frame K° and the frame K' in which the mean velocity vanishes.

Further, there is still another aspect which should be emphasized in 
connection with the comparison between Minkowski’s and Abraham’s tensors: 
Abraham’s force density is the real force acting on a unit volume, i.e. the 
force on the matter itself as well as on any charges and currents present 
within the volume. This force is compensated by the mechanical stresses 
plus the inertial force, in accordance with the relation

ft = ^^u + (^0^mech (3.5)

Minkowski’s force, on the other hand, amounts to counting the inertial force 
together with the proper force:

= // - (d/dt)g™<* = dkUik, (3-6)

and it has thus a less direct physical meaning than Abraham’s force. Min
kowski’s force does not contain any term which corresponds to the magnetic 
force on the polarization currents, this term is hidden in the field momentum.
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The non-appearance of such a magnetic force term has represented an 
obstacle for the acceptance of Minkowski’s tensor, as reflected for instance 
in Einstein and Laub’s articled5)

Example involving the boundary between two media
By the above analysis we have come to the important conclusion that 

the propagation of an electromagnetic wave through matter is conveniently 
described by Minkowski’s tensor in such a way that the rest of the system 
(the mechanical part) may usually be ignored. In this subsection, however, 
we shall examine the total momentum and motion of centre of mass for a 
total system when boundaries are involved; in this case all kinds of momen
tum and energy Hows have to be taken into account.

Imagine a plane wave with E = Eoeysin(kox-a)t) that falls in from 
vacuum towards an isotropic and homogeneous insulator at zero angle of 
incidence. We take the boundary as the plane x = 0, and put for simplicity 
e = p = n so that the reflected wave vanishes. We may consider a certain 
part of the plane wave, say of length l0 and cross section unity, and examine 
the consequences of the application of different forms of the momentum 
expressions. (The length Io is then required to be much smaller than the 
width L of the body over which the field travels.) But it is more convenient 
simply to consider the field as a wave parcel with length l0 and cross section 
unity, where l0 « L, so let us look at the system in this way.

The total field energies in vacuum and in the body are equal, = 10Eq/2 

= nlE2/2 = where / and refer to the body. By taking the divergence 
of Abraham’s tensor we obtain

. 9 9 n2 - 1 d
/■4 = -|E2V£ ~\H~^p +----------- (£xH) (3.7)

c dt

(cf.(1.4)), valid also over the boundary if one assumes a continuous variation 
of e and p. We shall first use this force in a computation of the various 
momenta. As E = H everywhere, the surface force during the penetration 
period is (1 — n)E2, and so the total momentum component in the x-direction 
transferred to the body on account of this force is

l«/e

^surf = _ çn2 _ =---- — (3.8)

o

where we have integrated over the penetration period.
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According to our earlier results, the effect of the last term in (3.7) is to 
excite a mechanical momentum in the body:

Gmech = «----- 1 f EHdx = (3>9)
c J nc

o

Finally, the electromagnetic part is

z
Gel.m. = _ f EHdx = (3 10)

c J nc
o

Collecting these terms the balance of total momentum can be checked :

^surf ^mech ^el.m. (3.11)

where Gvac is the magnitude of the momentum of the incoming field. This 
simple analysis exhibits the behaviour of the various momentum parts.

If we instead had started from Minkowski’s tensor, the last term in (3.7) 
would have been absent. In this case the momentum component (7surr supplied 
by the forces in the boundary layer, plus the field momentum GM = ^ei.m. + 
Gmech = nd^lc, would have added up to give the total momentum J^/c.

Let us also examine the centre of mass velocity for the total system. 
Denoting the coordinates of the centre of mass by X = (X, 0, 0), we have

d
dt

(3.12)

since the contribution to (3.12) from v = 1,2,3 vanishes when the boundary 
surface of the integration volume is chosen sufficiently far away. Hence 

c2Gvac
(3.13)

corresponding to the fact that the parcel travels with the velocity c before it 
strikes the body. It should be noted that in (3.13) Stot includes also the 
mechanical energy flux Smech due to the small motion of matter induced by 
the field.

Since the hody has a finite extension L in the x-direction then, during 
the period when the wave parcel leaves the hody, the effect on the body is 
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equal and opposite to that during the entrance period. Further, the motion 
of matter described by Smech is considered to be absent when the wave has 
left, so the body will stay at rest. Since the length of the parcel is small, it 
can be considered to have remained a time r = Ln/c in the body. Let 3/ and 
£ denote the total mass and displacement of the body in the x-direction; we 
then find from (3.8), (3.9) and the relation = GSUTÎ + Gmech that £ = 
(J^/Jfc2)(n - 1)L.

The gedanken experiment above is one of those considered by N. L. 
Balazs*18). We cannot agree to his conclusion, however, when he claims 
the correctness of SAV in contrast with by an analysis of the total momen
tum and centre of mass. Let us apply his procedure to the above case: The 
equation of momentum balance is given in the form

Gvac = G'+ M£/t, (3.14)

where G' is the magnitude of the field momentum in the body which is to 
be determined. Further, the law of conservation of the centre of mass velocity 
is written as

J^cr = Jff’crln + Mc2£. (3.15)

From these equations he obtains G' = which agrees with Abraham’s

expression only.
But by comparison with our previous treatment it is apparent that the 

balance equation (3.14) is incomplete. Eq. (3.15) is valid for both tensors, 
and leads to the expression for £ found above. But (3.14) implies that the 
magnitude of the mechanical momentum be given by 4/£/r, which ,in 
accordance with (3.15), (3.8) and (3.9), is equal to £surf + ^mech rrfois js 
an assumption which is compatible with Abraham’s expression only; we see 
from (3.14) that G' = Gvac - Gsurf - Gmech = Gelm', when the balance equation 
(3.11) is taken into account.

Finally we should mention that in an examination of an example similar 
to the one above, E. G. Cullwick*19) has claimed that Abraham’s momentum 
density is satisfactory while Minkowski’s momentum density leads to 
inconsistencies with respect to the momentum balance. His argument is 
essentially tantamount to saying that, in the situation above, the relations 
f/vac = gA, çvac =£ gM, determine the validity of the Abraham expression. 
It is however evident that in order to check the momentum balance over the 
boundary one should integrate the equation dkSik + dgjdt = - f\ in question 
over a volume which includes a part of the boundary, and thus one must 
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consider instead the momentum flow described by the components Sik. 
Moreover, the surface force must also be taken into account. The paper has 
been criticised also by P. Penfield*20- 21).

Other tensor forms
It is convenient to collect the remarks on the alternative tensor forms in 

this final subsection. First we recall that the de Groot-Suttorp tensor (1.9) 
must describe essentially another part of the total system than the part which 
we have made to correspond to the electromagnetic energy—momentum 
tensor. This follows from a comparison between the energy density (1.9b) 
and the energy density W = ^(ED + H B) on which we have based our 
derivations (cf. also the Hakim-Higham experiment mentioned in section 2). 
Next, the Einstein-Laub tensor (1.8) is in conformity with the expressions 
(1.9) when /z = 1. The most interesting alternative in relation to the topics 
considered in the present section is the radiation tensor (1.6) introduced by 
Marx and his collaborators; we recall that this tensor was defined for 
radiation fields only. The essential point in the construction of the radiation 
tensor can be visualized by an inspection of the equation (3.1): One assumes 
that the effect of the force fA is not to create a mechanical momentum, de
scribed by the components Cri4, but rather to form stresses, described by 
the components Uik. Eq. (3.1) can then be written as dk(Sfk + Uik) + dgf/dt = 0, 
leading to Uik = (n~2 - 1)S^., in accordance with (1.6). However, the 
main reason why we have not constructed the theory in this way is simply 
the result of the Jones-Richards experiment, to which we have already 
referred repeatedly. As we pointed out in the rather detailed consideration 
in I, section 6, it was essential for the validity of the derived formulas that 
the electromagnetic energy—momentum tensor in question be a divergence— 
free quantity in the interior of the body. Since the radiation tensor just has 
this property, and since the relation between the momentum How components 
is = = (l/n2)S^, it follows that the radiation pressure predicted by the 
radiation tensor is equal to 1/n2 times the Minkowski radiation pressure. 
By a comparison with the observed data we are thus in a position to draw 
the decisive conclusion that the characteristic assumption inherent in the 
derivation of the radiation tensor should be rejected. Note that the electro
striction effect will have no influence on this result.

Although it should therefore not be of importance to go into a detailed 
examination of the use of the radiation tensor in the example considered in 
the above subsection, let us yet note the following points. The force density 
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can no longer be written as (3.7), since this expression will violate the law of 
conservation of momentum. This is so because the last term in (3.7) is no 
longer associated with a mechanical momentum, and hence the total mo
mentum after the wave has entered the body is Gsurf + GeLm- Gvac. In 
order to fulfil the momentum conservation law the force density must be 
defined as /^ = — dvSfv, where the stress components are not the sum of the 
electrostratic and magnetostatic stress components. If we define Sfv = 
(1/n2(æ))*S^ also in the spatially dispersive region in the boundary layer, 
we find that the momentum induced by the surface forces is (G'Ä)surf = 
(1 - l/n^/c. The interesting aspect here is that the quantity (G5)surf has 
the opposite sign of the quantity GSurf calculated earlier in eq. (3.8); while 
the surface force following from the radiation tensor acts inwards to the 
body the surface force following from Abraham’s and Minkowski’s tensors 
acts outwards from the body surface. We are not, however, aware of a direct 
experimental test of this effect (cf. the last part of the next section).

4. Discussion of some Possibilities for Experiments

In this section we examine experimental situations in which time— 
dependent fields exert torques on dielectric bodies at rest. As usual we first 
focus our attention on the relative behaviour of Minkowski’s and Abra
ham’s tensors. In the first class of experiments considered—the interaction 
between a stationary radiation field and a dielectric body—the result is that 
the two tensors lead to the same answers. Thereafter, an example is given 
of a second type of experiments in which the difference can be measured. 
Finally, we propose a critical experiment testing the radiation tensor and the 
Einstein tensor.

Proof of equivalence
As an example of an experiment which traces the angular momentum 

interaction between an electromagnetic wave and a dielectric body, the old 
G. Barlow experiment*22) should first be mentioned. He made a careful 
measurement of the torque produced by a beam of light in oblique refraction 
through a glass plate, and obtained good agreement with the theory. We 
refer also to the famous R. A. Beth experiment*23), in which the existence of 
angular momentum in a light wave was detected by letting the wave pass 
through an anisotropic crystal. The latter experiment has more recently been 
repeated by N. Carrara*24) with the use of centimetre waves. These ex- 
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periments consisted in letting a stationary wave interact with the body and 
then measuring the deflection when equilibrium was established between 
the electromagnetic torque and the mechanical torque exerted by a torsional 
suspension. However, we need not go into detailed considerations of these 
situations in order to test the relative behaviour of Minkowski’s and Abba- 
ham’s tensors, since we will find the torque N A = N™, just as we did in the 
static case. Instead we present a simple argument which shows in general 
that in a wave-dielectric body situation the two energy-momentum tensors 
yield the same value for the torque.

Consider then a stationary high-frequency wave interacting with a 
dielectric body (in general anisotropic). The body is assumed so heavy that 
no macroscopic motion needs to be taken into account. If the angular 
momentum of the internal field in the body is denoted by M1, the torque N 
can be written as

2V = - dM™c/dt - dM^/dt. (4.1)

It can readily be seen that each of the two terms on the right hand side of 
this equation is the same for Abraham’s or Minkowski’s tensor. In both 
cases the energy flux is given as c(E x H), therefore the direction and 
velocity of the travelling field energy is the same, and it follows that the 
first term on the right of (4.1) is also the same. Further, since we assume 
that the field is stationary, we can simply put dMl/dt = 0. Hence NA = 
Nm = — dMva,cldt: The two energy—momentum tensors are equivalent with 
respect to torque effects since these effects are determined in terms of the 
vacuum field.

(Alternatively, we may consider a wave packet in interaction with the 
body during the time period t = 0 to t = T, during which the field is assumed 
to be stationary. Then we can require on physical grounds that N be inde
pendent of T at any time t, also in the small transient period when the field 
leaves the body. We now assume only that dMl/dt must be equal to some 
constant during the stationary interaction period, since each component is 
proportional to the averaged energy density of the incoming wave. When 
t > T, one has Ml = 0, but then dM1/dt can be made arbitrarily large in the 
transient period when the wave leaves the body, by choosing T large. These 
features are incompatible with the condition (4.1), hence dMl/dt = 0 in the 
stationary interaction period.)
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Proposal of an experiment
In the preceding we considered an electromagnetic wave in interaction 

with a dielectric system. Now there exists the possibility of combining 
electric and magnetic fields in a way which, in principle, makes it possible 
to bring out explicitly the effect arising from Abraham’s force. We shall give 
a proposal similar to one put forward by Marx and Györgyi<3>. A cylindric 
dielectric shell of isotropic matter with large e is suspended between the 
surfaces of a cylindric capacitor so that, in the absence of fields, the shell 
can oscillate about its axis (z) with a frequency co0. The internal surface of 
the capasitor is then charged to the amount q per unit length, and a homo
geneous magnetic field HQe~iMt is impressed parallel to the z-axis. We suppose 
that the wavelength which corresponds to the frequency co is large compared 
with the dimensions of the system, so that within the internal, massive 
cylindric conductor, we may write V * H — oE/c, where a is the conductivity. 
Taking into account that the penetration depth into the conductor is appro
ximately equal to |/c2/cocr, which is a large quantity when co is small, and 
putting p = 1, we obtain within the internal region of the conductor

H H(}e-iOit, E((> = — (4.2)
* 2c

Within the dielectric shell Er = q/(2ner), while eqs. (4.2) remain valid also in 
this domain. Thus

f4'<P

£—10 £ — 1 C/CO Hq

~^SErHz) =-----------o sin co/,at e Incr
(4.3)

when we take the real part. Hence the torque component is

£ — 1 qH0V
---------- co sin co/

£ 2nc
Keo sin co/, (4.4)

where V is the volume of the body. We have ignored the surface forces since 
these act in the same directions as — Vf and hence have no influence on the 
oscillations. The equation of motion can be written as 

(4.5)

where y is the damping constant and I the moment of inertia about the 
z-axis. The largest oscillations occur when co = co0 and are given by
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K
<p =----- coso0/.

/y
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(4.6)

This effect can in principle be measured. With a direct use of Minkowski’s 
tensor one obtains no force that can account for these oscillations, and 
Minkowski’s tensor is thus inappropriate in the present case. (It must be 
emphasized that the previous derivation of Minkowski’s tensor for time
dependent fields in isotropic media applies properly only to the case of 
radiation fields.)

As far as we know, the experiment has not been performed.
We emphasize the essential difference between this situation and those 

considered in the above subsection: At a given instant, the force component 
causing the torque does not vanish when integrated over the volume. 

Further, it is now the total time oscillations themselves which are detected 
and not, as in the previous situation, their effect after integration over a time 
which is large in comparison with the oscillation period.

Other tensors
Let us consider again the system of a stationary wave field and a dielectric 

body studied in the first of the subsections above, and first employ the 
radiation tensor S^v. This tensor has been derived for the case of isotropic 
bodies only, so we shall accordingly assume the body to be isotropic. It is 
immediately apparent that if the wave comes in from vacuum, interacts with 
the body and then enters into vacuum again, we can apply just the same 
argument as before to conclude that the radiation tensor yields the same 
value for the torque as Minkowski’s and Abraham’s tensors. But a simple 
calculation shows that the direction and magnitude of the surface force will 
in general be different from what we obtained in the previous cases; it is 
only the total torque itself that remains unchanged. (For instance, if an 
appropriately polarised optical wave falls obliquely inwards to the body at 
Brewster’s angle of incidence such that the reflected wave vanishes, it can 
be verified that the surface force acts in a direction parallel to the surface, 
instead of in a direction outwards along the normal vector, as obtained from 
Minkowski’s or Abraham’s tensor.) It has sometimes been claimed that the 
Barlow experiment*22) mentioned above, involving a measurement of the 
torque exerted by a light wave on a glass plate, should actually provide an 
experimental test of the direction and magnitude of the surface force. But 
we think that this is not so, although Barlow himself interprets the effect in 
a way corresponding to Minkowski’s or Abraham’s tensor. The only thing 
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measured is the total torque, which is explained equivalently by all tensors 
in question.

However, an obvious generalization lies at hand in order to change for 
instance the Barlow experiment into a critical experiment with respect to 
the radiation tensor, namely, to immerse the body into an isotropic dielectric 
liquid. The radiation tensor has a value different from the two other tensors 
mentioned in the liquid, and so a torque measurement can be crucial. In 
order to derive the appropriate torque expression it is convenient to write 
the general formula (cf. (I, 1.7))

in the following compact form:

JV - - J (rxS'“>)rfS-^( J (rxg)dV 

surface body

- - J (r x S"<>)dS.

surface

(4.7)

(4.8a)

(4.8b)

For an optical wave the last integral in (4.8a) vanishes because the field is 
assumed to be stationary and the body remains practically at rest, and the 
surface integrals are taken in the liquid just outside the body. By means of 
(1.6) and (4.8b) we lind the result Ns = (l/n2)lVM = (l/n2)AT4, where n is 
the refractive index of the liquid. The surface integral in (4.8b) can be 
evaluated in the actual experimental situation with one of the tensors in
serted, and one can thus check the tensors by a comparison with the observed 
torque.

As the next point we consider the Einstein-Laub tensor SEV applied to 
the same situation. (For optical fields we can put /z = 1, and it is then apparent 
from (1.8) and (1.9) that the Einstein-Laub tensor and the de Groot- 
Suttorp tensor are in agreement.) This tensor is defined also for anisotropic 
media. We evaluate this case most simply by noting the following relation 
in the liquid which surrounds the body:

S® - (4.9)

so that (4.8b) yields

Ne = NA + 4 J (r x n)E PdS,
surface

(4.10)
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where the surface integral is taken in the liquid. Einstein’s tensor thus leads 
to still another value for the torque, which might be tested experimentally.

The dielectric shell—experiment considered in the second subsection 
above is not of direct importance for the radiation tensor since this tensor is 
defined for radiation fields only. However, it can readily be seen that both 
the radiation tensor and Einstein’s tensor lead to Abraham’s value (4.4) 
for the torque. To this end we need only examine eq. (4.8a), where now the 
last term is non-vanishing and where is replaced by S™c in vacuum 
outside the shell. Since gs = gE = gA it follows that Ns = NE = NA. 
(Moreover, the value (4.4) can be checked by inserting the field values 
(4.2) and the expression for Er into (4.8 a).) This experiment is therefore 
not a critical test of the relative behaviour of the three tensors mentioned. 
In this case it does not seem either to be an appropriate generalization to 
immerse the system into a dielectric liquid.

5. Some Remarks on the Literature

Together with the exposition of the various topics we have met up till 
now—both in 1 and in the present paper—we have found it desirable to 
include also some remarks pertinent to essential passages in earlier works on 
the subject. The literature is however large, and there remain important parts 
of it that could not naturally be considered or even touched upon in the 
preceding exposition. We have therefore reserved the present section for a 
critical review of some earlier (phenomenological) treatments, especially 
those which seem to be incompatible with the interpretations given above. 
We think that this avenue is natural to follow, since the present problem is 
not only a deductive task but also a matter of clarification of a confused 
situation. Evidently we cannot give a detailed scrutiny of all the relevant 
papers of phenomenological nature, but shall rather be concerned with 
illustrative examples. For a large part we shall be concerned with the analysis 
of criteria. The present section represents the end of our nonrelativistic 
treatment; from the next section on we concentrate upon topics connected 
with relativity.

In the two first subsections we consider two gedanken experiments 
which have been put forward. The idea behind these gedanken experiments 
has been that by comparing with results obtained from physical conservation 
laws, one should be able to decide which energy—momentum tensor is 
correct. In both the cases we shall consider, Minkowski’s tensor has been 
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claimed to be preferable, as a result of a study of the conservation equations 
for momentum. We shall show how these experiments can be equivalently 
described with the use of Abraham’s tensor. In the subsequent subsection 
some aspects of the Cerenkov effect are considered, and finally we mainly 
dwell on arguments favouring other tensors than Minkowski’s and Abra
ham’s expressions.

Propagation of discontinuities
In two papers A. Rubinowicz<25> investigated the situation where electro

magnetic discontinuities are propagated through an isotropic body at rest. 
The conservation equations for energy and momentum are integrated over a 
domain 27 in four-space bounded by the hyperplanes <i0, cq and (73; tr0 
corresponds to the three-dimensional volume Vo which at the time t0 is 
enclosed within the two-dimensional surface 0; cq corresponds to the volume 

at t = t±> t0, and a3 is the connecting time-like hypersurface. The surface 
0 is considered moving inwards with the velocity u = c/n in the direction of 
its normal.

Then imagine a two-dimensional surface 0*(t) across which the field is 
discontinuous :

E1 = E, = H ; E2 = E + AE, H2 H + AH (5.1)

Here 1(2) denote the inner (outer) side of 0*. For simplicity, we suppose 
0* also to move together with the field, with the velocity u = c/n in the 
direction of its normal.

Rubinowicz integrates the energy conservation equation over 27 and finds 
that 0* is associated with no source of energy when either of the two energy
momentum tensors is inserted. We therefore turn our attention to the momen
tum conservation equation written in the following form (our notation), 
where the lime derivative is taken along the moving volume element: 

1 d
dk(Sik ~ 9i"k) + = - A

dV dt
and integrate over 27:

«1

(J-J>‘dr+P J(S“
Ei Vo «„ 0 + 0*

9^k)nkdS =

(5.2)

(5-3)

The contribution from 0* to the left hand side of (5.3) can be written in 
vector form, according to Rubinowicz, as



Nr. 13 35

J J[(*SW+5r«)l + (^n

«o 0*

(5.4)

Here, Sn is a vector with components Sni = Siknk, and n is taken to point 
outwards from the integration domains; p is a number, such that pM = n2, 
pA = 1. Hence Rubinowicz concludes that 0* is associated with no source 
of energy or momentum as far as Minkowski’s tensor is employed, in con
trast to what is the case with Abraham’s tensor, since (5.4) then is non
vanishing. This feature is claimed to favour the former expression.

Let us, however, examine the case p = 1. We see that the contribution 
(5.4) is not yet complete since the effect arising from g-mech has not been 
incorporated. This effect is connected with the term (n2 — l)/c2dSldt in f. 
Hence, the amount on the left of (5.3) is to be augmented by

From (5.5) we see that the contribution from 0* equals, in vector form,

(5-6)

which, together with (5.1) and (5.4), yields Minkowski’s result. We see again 
that the choice between Minkowski’s and Abraham’s tensors is mainly a 
matter of interpretation.

Induced motion of a ferromagnetic test body
Let us next examine the gedanken experiment recently considered by 

Costa de Beauregard^26). The arrangement is rather similar to the one we 
considered earlier in the second part of section 4: A ferromagnetic shell 
with mean radius r0, thickness b and length a is subjected to forces arising 
from a short current pulse in a rectilinear wire placed along the symmetry 
axis (z) of the shell. Besides, the wire is charged to a constant charge q per 
unit length and hence gives rise to the radial electric field Er = q/(2jir), 

3* 
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when £ is put equal to 1. When the current is flowing, a tangential magnetic 
polarization Af = B - H is present, and when the current has decreased to 
zero, there remains an amount AM ■= AB in the shell which, together with 
E, gives rise to a linear momentum in the z-direction. Costa de Beauregard 
integrates the force component/3 = — gdA3/cdt overtime and over the volume 
of the wire, and obtains

J* f3dVdt = — 1 qcibAM. (5.7)

wire

If we use Minkowski’s tensor to calculate the remaining momentum com
ponent in the z-direction when the current has left, we lind

AG™ = -A DBdV = - EAAIdV = -qcibAAI. (5.8) 
C C J c

body body

A corresponding calculation with Abraham’s tensor yields

AG$ = -A J EHdV = 0. (5.9)

body

Since (5.7) and (5.8) are obviously in accordance with the balance of total 
momentum, Costa de Beauregard concludes that Minkowski’s expression 
for the momentum density should be preferred.

Let us, however, continue to consider Abraham’s tensor and write the 
force density in the form

fA = + - SA)- (5.10)
dt

Hence, by integration over the total system 

-J
wire

ffdVdt + ^A j DBdV

body

0,
(5.11)

in view of (5.7) and (5.8). Eqs. (5.11) and (5.9) show how the momentum 
balance must be interpreted in terms of Abraham’s tensor: Although the 
electromagnetic field represents a non-closed system, eq. (5.9) shows that 
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the electromagnetic momentum is conserved. (In the case of Minkowski’s 
tensor this was not so, cf. eq. (5.8).) This conservation is carried into effect 
by the fact that the action from the force on the wire is equal and opposite 
to the action on the body, in accordance with (5.11). We note in passing that 
only Abraham’s tensor leads to a mechanical force on the test body in the 
z-direction, due to the fact that the surface forces on the body, which are 
common for the two tensors, are directed in the radial direction. There are 
also surface forces at the two end surfaces of the body, but these forces 
compensate each other. With Minkowski’s tensor, the presence of electro
magnetic momentum is due to a momentum flow into the body.

Following Costa de Beauregard we mention that the recent C. Goil- 
lot<27) experiment might be considered as a possible test of the theory. In 
this experiment a translational motion of a nature similar to the one described 
above was detected. However, although the qualitative features are similar, 
Costa de Beauregard reports that the Goillot effect is far too large to 
correspond to the effect deduced from the electromagnetic energy-momentum 
tensors. The effect of the experiment is presumably a spin effect(28). The 
inapplicability of the above theory should be expected in this case, since 
systems exhibiting remanent magnetization are very different from those 
described by the simple phenomenological theory we are considering.

On the Cerenkov effect
The Cerenkov effect is a convenient means for a study of the various 

energy-momentum tensors. We have touched upon this effect before, in 
connection with relativistic considerations in I, section 10, and we shall take 
it up again in the relativistic considerations later on in this paper, but here 
we examine some of its implications when the medium is at rest. In this 
kind of problem it is most convenient to use Minkowski’s tensor, and let us 
also employ the phenomenological quantum theory (see, for instance, ref. 
29 or ref. 30) according to which the four-momentum of the emitted photon 
is hk^ = h(k,ia)/c). With Minkowski’s tensor the balance equations for 
energy and momentum for the photon plus its radiating electron with mo
mentum p -> p', are

c|/p2 + m2c2 = ha> + cjp'2 + m2c2 (5.12a)

p = hk ( p , (5.12b)

from which we obtain the well-known expression for the angle 0M between 
p and k.
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Here u is the modulus of the velocity of the incoming electron, u = p/m(u).
From the point of view of Abraham’s tensor the above argument is only 

slightly modified: The momentum of the emitted photon in this case is 
lïk/n2, while the force f A gives rise to a mechanical momentum (n2 - 1) 
■hk/n2 which runs together with the field. These two contributions together 
yield the result hk which was used in (5.12b).

Concerning the literature on this subject we should first of all refer to 
the clear discussion by G. Györgyi(31). He shows the equivalence between 
Minkowski’s and Abraham’s tensors along similar lines as above. On the 
other hand, there has recently appeared a paper by J. Agudin (32) on the 
Cerenkov effect in which Abraham’s tensor, but not Minkowski’s tensor, is 
claimed to be in accordance with Einstein’s mass-energy relation. Let us 
therefore trace out the reason for this result, when we transform the formalism 
to our notation and simplify the argument, which consists in a study of the 
conservation equations for total energy, momentum and centre of mass
velocity. Imagine that the initial electron moves along the x-axis with the 
velocity u and that it emits a photon with mass m in the direction 0 at the 
lime / = tx. After the emission the electron moves with the velocity ii = 
p/m(u) in the direction y. The energy balance is written as

zn(u) = Km/c2 + m(u'). (5.14a)

With Abraham’s tensor the magnitude of the momentum of the emitted 
photon is îik/n2 = Iïa>l(nc), and the balance equation for the x-component of 
momentum is written as

hco ,
m(u)u = —cos0 + G“ech + m(u )u cosy?, (5.14b)

nc

where Gmeeh is the momentum transferred to the medium.
Finally, Agudin introduces an equation expressing the centre of mass

theorem. During the time period f = 0 to t = t2, where 0 < < /2, the
centre of mass of the total system is displaced by a distance ni(u)c2u/2/J^tot, 
and the relation given by Agudin is equivalent to writing

m(u)td2

+ Gæech(f2 - 0 + zn(u')[zd1 + (u cosy)(/2 - ^)]. 

(5.15)
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By inserting eqs. (5.14) into (5.15), one finds that the latter relation is 
fulfilled if m' = Ikd/c2, which is Einstein’s mass-energy relation.

Considering Minkowski’s tensor, Agudin uses the same set of equations 
as above with the single difference that lhe first term on the right hand side 
of (5.14b) is multiplied by a factor n2. The new value for m' one now obtains 
shows an involved geometrical dependence which must be regarded as un
physical. From this he concludes that Abraham’s tensor is the one of the two 
tensors that should be preferred.

Let us now examine the above argument from the point of view of our 
earlier interpretation. Since (ï™ech in (5.15) refers to the small motion of the 
medium induced by the photon, we must have Gpech = ((n2 - l)/nc)ha>cos0. 
This value is in accordance with the value for G™ech appearing in equation 
(5.14b), which is constructed on the basis of Abraham’s tensor. However, 
with Agudin’s construction of the momentum balance in the case of Min
kowski’s tensor the right hand side of (5.14b) is changed into (nhco/c)cos 0 + 
^mech + 77?(z/){/COS(p. Thus the two values of G™ech become different; in 
(5.15) (™ech remains unchanged while in the momentum balance G^ech = 0. 
This is the reason for the diverging result. It is instructive to recall that the 
centre of mass-velocity for an arbitrary (limited) total system is given by 
c2Gtot/J^tot (cf. eq. (3.13)), which is a constant in view of the conservation 
equations for energy and momentum. Applied to the present case this means 
that the centre of mass-theorem can yield no more information than what 
is contained in eqs. (5.14) We are evidently free to assign a mass in = hco/c2 
to the photon also in the case of Minkowski’s tensor.

Finally we note that the Cerenkov effect provides a convenient op
portunity to examine also the radiation tensor (1.6). If we in this case con
struct the energy and momentum balance similar to (5.12) the only difference 
is that the term hk in (5.12b) has to be replaced by hk/n2; lhe radiation 
tensor is divergence-free and there is no force present to give rise to a me
chanical momentum. Thus we find the following expression determining the 
angle 0s between/) and k in this case:

(5.16)

Since ÅTi « p this equation leads to unphysical values for 6s. It seems 
therefore that there are even formal difficulties for the application of the 
radiation tensor to situations where both particles and fields are present.
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Final remarks
So far we have limited ourselves to a study of previous treatments 

advocating the validity of either Minkowski’s or Abraham’s tensors. In this 
subsection we discuss briefly, without going into detail, some papers in 
which diverging tensor expressions have been given preference.

The tensor (1.8) introduced long ago by Einstein and Laub was en
countered already in section 2, in connection with electrostatic phenomena. 
We recall the important result that the excess pressure effect in a dielectric 
liquid predicted by this tensor does not lit the Hakim-Higham experiment. 
Let us yet write down the complete force expression in the time-varying 
case :

„ 1 1 . 1
fE = qE+(P-\DE+(M-^H + -(J * H) + -(Px (5.17)

c c c

It should be noted that according to (5.17) the magnetic force density acting 
on a stationary current distribution, for instance in the interior of a wire, is 
equal to (1/c)(jxH), instead of the usual x B) following from
Abraham’s or Minkowski’s tensors. Now, in order to support their force 
expression, Einstein and Laub analyse in their papertwo examples 
involving the presence of stationary currents. The second example considered 
is the following: An infinitely long, rectilinear wire carrying a stationary 
current J is assumed to prossess a magnetization M in a direction per
pendicular to the wire. When no external field is present, it is clear that the 
electromagnetic force on the wire vanishes. Einstein and Laub verify by a 
direct calculation that their tensor leads actually to a vanishing force Ft 
per unit length in a direction i perpendicular to the wire. We must point out 
however, that this result is not peculiar for the Einstein-Laub tensor and 
thereby does not represent any particular support for this tensor. In fact, 
any of the actual tensor expressions will lead to this result, as an immediate 
consequence of the relations

O ■ I WT - ^S^ntdS, (5.18)

unit.
length

where the value of the last integral goes to zero when the integration surface 
is taken sufficiently far away from the body.

Concerning the remaining terms in (5.17) we mention that the argument 
for introducing the term (1 /c) (P x H) was that there must be no distinction 
in principle between external currents j and polarization currents P (cf. 
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also our remarks in connection with eqs. (3.5) and (3.6)). The magnetic 
terms in (5.17) were introduced by analogy considerations.

Einstein and Laub’s paper was criticized by R. Gans(33). He employed 
the force expression corresponding to Minkowski’s tensor, at least for para- 
and diamagnetic media, and made an explicit calculation of the transversal 
force on a conductor which carries stationary current and is surrounded by 
an external magnetic field. Ferromagnetic media were considered separately. 
In all cases the force was found to vanish when the external field is zero, in 
accordance with our statement above.

One remark is called for, regarding Gans’ claim that the Einstein-Laub 
expression comes into conflict with the energy balance. In his argument he 
uses assumptions that are valid for Minkowski’s tensor only, viz. that the 
energy flux vector is given as 5 = c(E x H) also when the velocity of the 
medium is different from zero. The other tensor expressions will lead to an 
explicit appearance of the velocity in the energy flux expression.

The use of thermodynamic methods in the present problem represents a 
special kind of approach. We have already employed such a method in this 
paper, although in a very simple form, in section 2. In this context we should 
refer to the work by de Sa<34> and to two papers by Kluitenberg and 
de Groot(35). Kluitenberg and de Groot postulate a certain relativistic 
Gibbs relation and assume the material energy-momentum tensor to be 
symmetric; they obtain from these assumptions a symmetrical electro
magnetic tensor which in the rest system is in accordance with eqs. (1.9), 
apart from a difference in the energy density component. Further, they 
claim that the formalism yields Abraham’s tensor as an equivalent result, if 
appropriate new definitions for the hydrostatic pressure and the internal 
energy are imposed. Concerning this latter statement, however, we must 
point out that the formalism must always be chosen so as to conform to the 
observed effects, and the Hakim-Higham experiment does not seem to leave 
the room for ambiguities in the definition of pressure in the electrostatic 
case (cf. section 2).

The papers by G. Marx, G. Györgyi and K. Nagy<3, 36, 37, 38) (with 
further references) contain a series of arguments of different kinds, and 
represent together one of the most extensive macroscopic treatments of the 
problem that has been given. We are considering elements of their papers 
at various places in our work, for instance in the examination of the radiation 
tensor. Their main conclusion is that Abraham’s tensor is the basic electro
magnetic tensor, while the radiation tensor (instead of Minkowski’s tensor) 
is claimed to be the result of a combination with the excited matter induced 



42 Nr. 13

by a propagating field. Since in this section we consider fields within matter 
at rest, we should mention that the difficulty they claim to exist for Min
kowski’s tensor in explaining the propagation of the centre of mass for a 
limited radiation field within an isotropic dielectric, is cleared up of one 
observes that the lime derivative of the quantity (SM/c2 gM), integrated 
over the total volume, is equal to zero.

As we have noted, the absence of terms containing polarization and 
magnetization entities in Minkowski’s force has represented an obstacle for 
the acceptance of this expression (cf. also the book by Fano, Ciiu, Adler(39)). 
In a series of papers published recently(40), P. Poincelot took the full 
consequence of the opposite point of view and proposed the introduction of 
all kinds of polarization and magnetization terms in the force on an equal 
footing with the free charge and current terms, viz.

1
/=((? — V • P)E + -(j + P + eV x Af) x B (5.19a)

c

/4 = - E • (j + P + eV x 4f). (5.19b)
c

The tensor corresponding to the force (5.19) can be expressed in terms of 
E am I B in the same form as the electromagnetic, tensor in the vacuum-field. 
However, although (5.19) cannot be rejected on purely formal grounds, we 
cannot find any argument of convenience or experimental evidence that sup
ports this expression.

6. Angular Momentum in Arbitrary Inertial Systems

In the remaining part of our work we shall be concerned with topics 
connected with relativity. To some extent we shall have the opportunity to 
return to a study of situations which were considered already in I, chapter 
IV, in connection with Minkowski’s tensor. From the preceding it should be 
clear that in a relativistic theory the latter tensor is convenient to use, in 
order to obtain information about the direction and velocity of the pro
pagating field energy. But it is instructive lo consider also the behaviour of 
the alternative tensors (especially Abraham’s tensor) in arbitrary inertial 
systems, since such an anlysis will exhibit characteristic differences between 
the tensors. In this section we assume that the medium is homogeneous and 
isotropic, and let as usual K denote the inertial system in which the rest 
system K° moves with the velocity v along the x-axis.
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Evaluation of torques within an infinite medium
Let us image a finite radiation field within a large (infinite) dielectric 

medium. The angular momentum quantities MIIV are in general defined by 
the integral

taken over the whole field, in any frame K. Let us further imagine that for 
each of the electromagnetic tensors in question we insert the appropriate 
expression for g/t into the integral in (6.1) and calculate M^v. In this context 
it should be emphasized that in each case g„ is considered as a field quantity, 

thus being considered as a field angular momentum. This definition is 
the natural one and we have used it throughout, in I as well as in the present 
paper, although we have repeatedly pointed out that in the Minkowski case 
the momentum density g™ in reality includes also a mechanical part which 
is responsible for the asymmetry of Minkowski’s tensor. In other words, 
Mi nkowski’s angular momentum contains in a strict sense also a con
tribution from the mechanical part of the total system. To call a field 
angular momentum is obviously just tantamount to calling G^1 a field linear 
momentum. If on the other hand we take the distinction between the two 
parts of G™ explicitly into account and exclude the mechanical part of g^f 
from the expression for field angular momentum, we obtain instead Abra
ham’s expression Mév, since that part of g^f which pertains to the electro
magnetic field is just g£. The different ways of dividing the total angular 
momentum into a field part and a mechanical part obviously have no in
fluence upon the conservation of total angular momentum, which is a 
consequence of the symmetry and the zero divergence of the total energy— 
momentum tensor. Thus, in each case we obtain the mechanical angular 
momentum by inserting that part of the total momentum density which is 
not counted as a field entity.

As regards Minkowski’s tensor it seems appropriate to recall from I, 
section 11 that the quantities M^v are equivalent to the angular momentum 
quantities one can most simply construct on the basis of Noether’s theorem. 
This is in accordance with the general property of Minkowski’s tensor that 
it readily adjusts itself to the Lagrangian procedures. We recall also that 
M„v is in general not a tensor.

For a comparison between the various tensors it is however not the 
angular momentum itself which is of primary interest in each case, but 
rather its time derivative, i.e. essentially the body torque. The torque is 
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defined as AT = — dM/dt, and we shall in the present subsection start to perform 
a direct calculation of the torques corresponding to Abraham’s and Min
kowski’s tensors. It will turn out that the two values so obtained in general 
are different from each other. This difference is what we should expect, 
since the momentum densities gA and gM are themselves essentially different 
in direction and magnitude.

The last point requires some further explanation. In all electrostatic (or 
magnetostatic) cases and also in all high-frequency electromagnetic cases 
considered up till now we have found that Abraham’s and Minkowski’s 
tensors yield just identical expressions for the torque on a test body im
mersed either in a vacuum or in a dielectric fluid. The reason for this equal
ity can be understood in a simple way by observing that in those cases the 
torque could be evaluated as a function of the field stress tensor taken in 
the domain just outside the surface of the body, wherein the equality SAk = SAk 
is valid. (Cf. eqs. (2.11) and (4.8b) for the electrostatic and electromagnetic 
cases, respectively.) In the situations considered in the present section there 
is however no similar reason why the torque expressions should be the 
same; we have to lean directly upon the formula (6.1) and evaluate it over 
the field region within the body. In the Minkowski case the torque can be 
looked upon as a consequence of the asymmetry of the mechanical energy
momentum tensor (this fact having represented as an objection to the 
acceptance of Minkowski’s tensor), while in the Abraham case the torque 
arises because of the force density.

In spite of this difference between the two torque expressions obtained 
within an infinite medium we shall nevertheless in the next subsection see 
that the torques are relativistic ally equivalent from a physical point of view, 
since both of them are compatible with uniform motion of the physical 
system in K. In this context we shall draw into consideration the analogous 
situation encountered in relativistic mechanics of clastic media: An elastic 
body subjected to stresses in the rest frame will in general require a torque 
to maintain steady motion in another inertial frame.

Let us now start with Abraham’s tensor and perform the calculation. 
From (6.1) it appears that the torque NA = - dMA/dt in K is given by

AT-'1 = j(r xfA)dV. (6.2)

At first sight it seems that one will meet a difficulty in the evaluation of this 
integral. This difficulty is connected with the non-invariance in four-space 
of the world lines corresponding to Abraham’s energy flux 5 1 (cf. the next 



Nr. 13 45

section). On the other hand we pointed out in I, section 9 that the ray velocity 
u, which is the velocity of propagation of the wave energy and which may 
be written as u = SM\WM, transforms like a particle velocity. From this it 
follows that the world lines corresponding to Minkowski’s energy flux SM 
really have the property that they remain invariant in four-space upon a 
Lorentz transformation. Now it is clear that in order to obtain a picture of 
the wave propagation in K one has to transform the total wave, i.e. one must 
include the effect also from the produced mechanical momentum ^mech0 
in K°. This feature resolves the apparent dilemma in connection with the 
evaluation of the integral in (6.2): Even though N1 is different from 5‘v 
both in direction and magnitude we have to integrate over that part of space 
where the field is actually present, i.e. across the world lines corresponding 
to SM.

It is now convenient to assume that the field travels parallel to the xy- 
plane in such a way that any wave vector k which is contained in the wave, 
makes an angle ■& with the x-axis in K. It can readily be verified that the only 
non-vanishing component in (6.2) is the z-component, the other components 
fluctuate away. We evaluate the integral in (6.2) over the domain AB, i.e. 
over the hypersurface 1 = 0 (cf. I, Fig. 2). We obtain

- V J (W - ,r°2ff + ßcff^dV. (6.3)

AB

Tliis integral is to be transformed into an integral taken at constant time in 
K°, and similarly as in I, section 12, we choose the domain CI) for which 
t° = 0. The world lines determined by will each intersect AB and CI) in 
two points with coordinates (x^(AB), t°(AB)) and (x®(CI)), 0) in K°, such that

xJ(CD) = x°(AB) ~-t° (AB) cos = xJ(AB)^l +-cos#°j

n n C „ n n ßXy (CD) sin&°
x°2(CD) = x°(AB)--I°(AB)sin#0 = x°(AB) + P1\J 

n n + ßcosv

,r»(Cß) - x»(AB), f»(Aß) - - -xJ(AB).
c

(6.4)

The calculation is carried out in a similar way as in section 12 of I, so we 
abstain from a detailed exposition. The relation between the volume element 
dV and the element dV°, taken at constant time in K°, is given by (I, 12.9). 
We find
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f æiC/aV + (/3/n)sin#°/ ‘f) - (1 + (ß/n)cos&0).T°2ff
N3=Jb------------- dV ■ <65>

Since fA° = |(n2 - l)/nc]#W7°/â/°, a representative term in (6.5) can be 
transformed as follows:

n ~ ^°sinü°cosï)0. (6.6) 
ir

In the second term we have here used the fact that c//(//°[ ] = (c/n)cos#°, 
the centre of mass-velocity in the .redirection. By a similar treatment of the 
other terms in (6.5) we find

sin#0 cos#0 ..____________ o
(1 + (ß/n)cos#0)2

(6.7)

Thus there results a non-vanishing torque also with the symmetrical Abra
ham tensor. So far we have considered only the case where the domains AB 
and CD are placed at / = 0 and t° = 0 respectively; however, the same result 
applies also when AB and CD are placed at arbitrary constant times in K 
and K° due to the fact that the force density fluctuates away when integrated 
over space. So the expression (6.7) is constant in time.

Let us now consider Minkowski’s tensor. From (6.1) we find

< - j(S“-S«)<(V. (0.8)

Now S'21 - S'i2 = [(fi2 - 1 )ln]ßy W°sin#°, and the integration in (6.8) can 
be carried out in the same way as above. We get

n
(6.9)

We see that the expressions (6.7) and (6.9) in general are different from each 
other, although they both vanish in the rest frame as they should. Il is 
therefore natural to ask whether it is possible to single out one of these 
these expressions as preferable. As we shall now see this is not so in the case 
of an infinite medium, since the torque expressions (6.7) and (6.9) may be 
looked upon as representing relativistic effects of the same nature as the non
observable effect encountered in ordinary relativistic mechanics of an 
elastic body possessing stresses in its rest frame.
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A relativistic effect
Let us first recall the following situation from mechanics: If an elastic 

body is subjected to stresses in its rest frame it may in other frames exhibit a 
momentum component at right angle to the direction of motion. Conse
quently, the body will require a torque in order to maintain its uniform 
motion.

We find it desirable to go into some details. Let be the mechanical 
stress tensor of the elastic body in K°. The mechanical torque in K is

N=$(rxf)dV. (6.10)

Then make the explicit requirement that the body remain in steady motion 
in K. This means that we can put dg/dt = 0, where = - iir^fc and the 
lime derivative is taken along the volume elements dV which follow the 
body. Thus, the body experiences a change of angular momentum equal to

dM Ç (dr \
(6n)

since also (d/dt)dV = 0. Inserting dr/dt = v we obtain

dM r
----  = (t> x g)dV = v x G. (6.12) 
dt J

If the torque (6.10) is equal to the amount (6.12) which the body actually 
requires in order to preserve stationary motion, then the scheme is con
sistent, and we have an example of a situation where the existence of a 
torque is not followed by a rotation. We have to stress the difference between 
the calculations that led to (6.10) and (6.12): In the first case, the velocity 
of the body was required to be equal to v, and we can imagine that this 
requirement is fulfilled at a certain time in K just after the Lorentz trans
formation from K° has been performed. But in the latter case, the body 
velocity was required to be the same at an arbitrary instant afterwards, 
corresponding to the fact that the directions of the world lines of the body 
were required to be unaltered.

It appears from the text-books (M. von Laue<41), R. Becker<42>) that the 
equivalence between N and dM/dt has been verified in certain special 
cases. But the equivalence can also be shown quite generally for an elastic 
body, by the following simple consideration.
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Let us calculate a typical component of the torque in K, say the z- 
component. We readily lind by an insertion into (6.10)

^3 - J [?(æî + »Öf? - f (r~2*îfï æ?rî)dV°. (6.13)

AB CD

Using now the fact that = dkr^k, we can write

Mî = J (y“2.r;-r^ - i /^2 J r^dU0

CD CD

since the surface integral is performed over a surface outside the body 
where vanishes.

Further, by means of the relation r24 = ißyr^ we readily obtain by an 
insertion into (6.12)

CD

Eqs. (6.14) and (6.15) show the consistency in the case of an elastic body: 
The body is acted upon by a torque which is equal to the change of momen
tum required in order to maintain steady motion.

After this digression let us return to the radiation field. The torque on the 
body is defined as

— J" Çx^fk — &]cfi + &ik ~ Skß)d\ > (6.16)

where i,k,l are cyclic. (Actually, the expression (6.16) has been derived 
indirectly as A) = — dMik/dt; however, the coordinate dependent terms in 
(6.16) appear similarly as in (6.10), and the two last terms in (6.16) must 
yield the appropriate torque contribution from the tensor asymmetry, cf. for 
instance the considerations in section 4 of I.) The expressions for A) that 
we need here have been derived in (6.7) and (6.9).

Next, require explicitly steady motion in K. The necessary and sufficient 
conditions are: (1) The body velocity v = (n,0,0) = constant; (2) dr/dt = 
u = SM/WM along the moving wave elements dV. From these conditions it 
follows that U„ is a four-vector and that the world lines remain invariant in 
four-space. Moreover, it follows that dg/dt = 0 along the wave trajectories, 
since gt (for any field tensor) is proportional to the energy density W°, 
which is a function of the invariant wave phase qp, (p being constant along the 

- ß2 / (6.14)

CD
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trajectories. Thus, taking the time derivative of the field angular momentum 
we obtain in the two cases

dMf/dt = (w x Ga)3, dM^/dt = (u x GM)3. (6.17)

If we here insert the appropriate values for u, G 1 and GM we will find the 
expressions (6.7) and (6.9) respectively, with the opposite sign. If now 
Abraham’s or Minkowski’s tensor is taken to describe the field, it follows 
from the conservation of total angular momentum that the rate of change of 
the mechanical angular momentum is given by the expression (6.17), with 
the opposite sign. In both cases we therefore find that the scheme is con
sistent in the same way as it was found to be in the situation considered 
previously (cf. (6.14) and (6.15)): The body is acted on by a torque which 
is just equal to the rate of change of mechanical angular momentum being 
necessary in order to prevent rotation.

At this place we should make a comment on an assertion put forward 
by von Laue in § 19 of his book<41>, concerning a verification of the principle 
of conservation of total angular momentum if Minkowski’s tensor is used 
for the field. This is actually one of the arguments von Laue presents in 
favour of Minkowski’s tensor. He first writes the rate of change of field 
angular momentum similarly as the last of eqs. (6.17), by taking the time 
derivative along the moving wave elements. Thereafter, and this is the crucial 
point, the z-component of the torque on the body is claimed to be given by 

-x2atS")dV - J(S"-S«)dV. (6.18)

Since it can be shown that (u x ^M)3 = - S™, von Laue concludes that
the conservation of total angular momentum is verified in the present case.

We cannot find, however, any reason why this torque component should 
be given by the left hand side of eq. (6.18). Moreover, one cannot find 
expressions for the rate of change of the field angular momentum and the 
body torque independently of each other, and thereafter check the angular 
momentum balance. Instead, the torque is found by just requiring the 
angular momentum balance to hold, such that N be given by the relation 
N = - dM/dt.

Finite bodies
Hitherto we have restricted ourselves to a consideration of very large (or 

infinite) dielectric bodies. The case of finite bodies is important, however, 
since it reveals characteristic features of the angular momentum balance.

Mat.Fys.Medd.Dan.Vid.Selsk. 37, no. 13. 4 
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Let us therefore consider this case, and for definiteness assume that an 
optical wave passes through an isotropic and homogeneous glass plate, for 
instance at Brewster’s angle of incidence in K°. The electromagnetic 
forces are present only in the boundary layers, and we shall assume that an 
external mechanical surface force Fext0 just counterbalances the surface 
force F° caused by the field, in such a way that the field is not disturbed. 
The consequence of the last assumption is that the mechanical angular 
momentum of the body is conserved in K°, NA° = 2V'v° = — 2Vext0, and that 
the presence of extra mechanical stresses due to the external forces is avoided.

We now consider the system in the frame K, and adopt Abraham’s 
tensor as the field tensor. From (6.16) it is apparent that the torque is given 
as r x fA, integrated over the internal volume, plus r x FA, integrated 
over the surfaces. We readily find that the contribution from the first term 
is zero, and as the electromagnetic surface force Fl transforms similarly as 
the external force Fext, we can write

Na = - dMAjdt = - Next. (6.19)

Thus we obtain the satisfactory explanation that the net torque acting on 
the body is still zero. If, however, Minkowski’s tensor is adopted for the 
field, the situation is changed. We see that= 0 in the interior domain and 
that = FA so that the contribution from the forces is the same, but there 
appears an extra volume effect in the torque because of the asymmetry of 
the stress tensor S™. According to the theory the body is thus acted upon by 
a net torque in K, although the motion is uniform and although no account 
has to be taken of the influence from elastic stresses in 7<°. We find this 
property to be rather inconvenient. It does not mean, however, that Min
kowski’s torque expression should simply be rejected. For we may carry 
through an analysis of the same kind as in the previous subsection, where 
now the lime derivatives are to be taken along the moving body elements, 
and will find that also now the Minkowski torque is compatible with the 
requirement of steady motion. The peculiar property of Minkowski’s torque 
is obviously a consequence of the fact that the momentum density gM° 
contains both a pure field quantity gA° and a mechanical quantity ^mech0, 
cf. also the remarks in the beginning of this section. In conclusion, the study 
of the case of finite bodies reveals the characteristic effect that the most 
natural division of the total angular momentum into a field part and a 
mechanical part is made when one adopts Abraham’s expression for the 
field. On the other hand, in the case of infinite bodies we saw in the previous 
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subsection that no preference could be assigned to either of the two torque 
expressions.

At this place a remark is in order, in connection with a comparison with 
the situation where an electromagnetic wave passes through a finite, aniso
tropic body at rest. Such a situation was considered in section 4, and we 
recall that the equation NA° = NM was found to hold in general. Now our 
present situation resembles the wave-crystal situation from section 4, since 
an isotropic body in K° becomes anisotropic in K. We may note that the 
total angular momentum in the vacuum field when the wave has left the 
body is independent of which energy-momentum tensor is used for the field, 
since the direction of the wave propagation in either case is determined 
from SM. Yet we have found that NA in general is different from NM when 
ß + 0.

To point out the difference between these two cases let us once again 
examine the torque balance (4.1):

N = - d/dtMv&c - d/dlM1, (6.20)

where now the time derivatives are taken along the moving body. In ad
dition to the assumption of the independence of Afvac we could, in the case 
considered in section 4, require on physical grounds that N be independent 
of the interaction period 71 (assumed a stationary field during this period), 
expecially in the small period when the field leaves the medium. The crucial 
point here is that this latter requirement can no longer be upheld when the 
body moves. Consequently, dMi/dt is in general different from zero, i.e. the 
torque depends in this case also on the internal field. We note that dMl/dt 4= 0 
also with Abraham’s tensor.

As mentioned above the purpose of assuming F° = - Fext0 was to obtain 
a situation in which no complication will arise because of extra mechanical 
stresses set up in K°. Let us now briefly consider how the situation is changed 
if we let the same value of Next0 be obtained by external surface forces which 
do not compensate the electromagnetic forces at each surface element. In 
this case there will appear mechanical stresses in K°, described by the 
mechanical stress tensor These stresses may lead to non-vanishing 
momentum components at right angle to the velocity v in K, and thus be 
connected with the torque ATftress = - (j/c)0wJwhich follows from 

the requirement of steady motion. This amount is equal to the resulting 
torque exerted by the forces, so that we obtain instead of eq. (6.19) the 
equation jyext = 2Vstress. (6-21)

4*
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So far we have considered only Abraham’s and Minkowski’s tensors. 
Let us finally for a moment consider the radiation tensor S$v, which is 
symmetric and divergence-free within an isotropic medium. In the situation 
considered in the first subsection above it follows immediately that A7/ = 0, 
so that according to the radiation tensor the angular momenta of the field 
and the body are conserved separately. If the body is finite, the radiation 
tensor behaves similarly as Abraham’s tensor in the sense that the torque in 
K is determined by the surface forces only. It should however be borne in 
mind that the radiation tensor yields already in the rest frame a surface 
force with another direction and magnitude than Abraham’s surface force, 
although the torques are the same (cf. section 4).

7. Further Considerations on Relativity

In this section we continue the investigation of relativistic phenomena. 
Only effects involving special relativity will be considered. For the main 
part we shall be concerned with topics that were studied in chapter IV of I 
in connection with Minkowski’s tensor, and shall relate the phenomena to 
the other tensors. In the following two subsections we study two subjects 
that are closely related to each other, namely the velocity of the energy in an 
electromagnetic wave and the behaviour of the relativistic centre of mass.

Transformation of the energy velocity in a light wave
Consider a plane light wave within an isotropic and homogeneous 

insulator moving with the uniform four-velocity Vin the frame A. Similarly 
as in I, section 9, the ray velocity u is defined as the velocity of propagation 
of the light energy. The ray velocity is in general different both in magnitude 
and direction from the phase velocity. We recall that it is shown in Moller’s 
book<7> that the ray velocity transforms like the velocity of a material particle, 
and further that this transformation property is verified experimentally in 
the Fizeau experiment, at least to the first order in v/c.

If now an energy-momentum tensor shall describe the whole travelling 
wave, it must be possible to relate the ray velocity u to the components of 
this tensor by the equation u = S/W. For such a tensor the quantity A/IV 
must therefore transform like a particle velocity. To investigate whether S„v 
behaves in this way is tantamount to examining whether the quantities

ic -U 
|/1 - S2/(c2W2)/

(7.1)



Nr. 13 53

constitute a four-vector. As stated already in I, Møller has shown that the 
sufficient and necessary condition for being a four-vector is that

1
c2^/za uxuv = 0 (7-2)

in some inertial system.
We recall that by inserting Minkowski’s tensor one really finds = 0 

in the case of a most general plane wave. This circumstance thus provides a 
further support for our general assertion that Minkowski’s tensor describes 
the whole travelling wave. In particular, if a ray travels parallel to the 
direction of the medium velocity, one obtains immediately by means of 
Minkowski’s tensor the well known formula, to the first order in n/c,

(7-3)

This formula was verified in the Fizeau experiment.
After this summary of the results obtained in section 9 of I, we inve

stigate how the situation looks from the point of view of Abraham’s tensor. 
In this case one readily finds that RA°V + 0 in general, so that the equation 
(7.2) is not fulfilled and SA/WA does not transform like a particle velocity. 
Correspondingly, the last of eqs. (7.3) is replaced by

(7-4)

which is essentially different from (7.3). This kind of behaviour is what we 
should expect: Abraham’s tensor leaves out of consideration the influence 
from the produced mechanical momentum g-mech° in K°, and thus SA/WA 
cannot be expected to be equal to the ray velocity. The non-compatibility 
between the transformation criterion and the Abraham tensor evidently does 
not represent a real difficulty for this tensor.

Let us now follow a more general line of approach and try to find a set 
of reasonable conditions under which the quantity S/W, obtained from some 
energy-momentum tensor S„v, actually obeys the transformation criterion. 
To this end it is advantageous first to recall the essential assumptions in
herent in Møller’s proof (in §24 of his book<7)) about the transformation 
character of the ray velocity u: In the first place, the equation for the wave 
front of an elementary spherical wave in K° being emitted from the origin at 
the time t° = 0 is written as
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(7.5)

In the second place, the, corresponding equation for the wave front in K is 
obtained by means of point transformations of each term in (7.5), so that the 
world lines are assumed to remain invariant in four-space upon a Lorentz 
transformation. By means of these conditions Moller derives that u 
transforms like a particle velocity.

Our task is now to transform the above conditions into equivalent 
conditions imposed on the tensor S„v. In accordance with (7.5) we shall first 
require that the magnitude of the velocities of propagation of energy and 
momentum is equal to c/n, as expressed by the equations

(7.6)

where e° is the wave normal for the plane wave. Note that these conditions 
actually mean also that the field is closed, i.e. = 0, since each frequency 
component of the plane wave depends on the wave phase (k°-r° - a»0/0) so 
that ekdk may be replaced by - nd/(cdt0). If we now insert the conditions
(7.6) into the expression (7.2) for Rllv, we really lind that R®tv = 0.

So far we have only shown that the conditions (7.6) are sufficient to 
satisfy the transformation criterion; we have not verified that they are 
necessary. In fact, if we merely maintain the single restriction that S®k be 
proportional to S?4e°, we tind that the relation

(7-7)

is necessary to yield R®lv = 0. Evidently eq. (7.7) becomes equal to the last 
of eqs. (7.6) when |5°|/W° = c/n. Note that the weak condition (7.7) does 
not even imply that be divergence-free. We think that this condition is of 
minor physical interest, however, since it is preferable to construct the 
theory so as to conform to the equation (7.5) (or the wave equation) in a 
simple way, i.e. one should always take |*S"°|/W° = c/n.

It has been pointed out by G. Marx et al<3> that the radiation tensor S$v 
also obeys the transformation criterion. This feature can be explained on the 
basis of eqs. (7.6), since the radiation tensor satisfies these equations. On 
the contrary, both Abraham’s tensor and the de Groot-Suttorp tensor (1.9) 
are incompatible with the condition (7.7) as well as the transformation 
criterion R/IV = 0.
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Centre of mass
Let us now assume that the interior domain of the radiation field can be 

taken as a part of a monochromatic plane wave with wave vector k. Similarly 
as in section 12 of I we further assume that the small boundary layer—in 
which the usual plane wave relations between the fields do not hold— 
contains negligible field energy and momentum.

The spatial coordinates Xt(K) of the centre of mass of the field in K are 
defined by

(7.8)WdV,

whatever energy-momentum tensor is employed. Similarly as in the previous 
section it must however be borne in mind that in any case the localization 
of the field in K is determined by Minkowski’s tensor, i.e. one integrates over 
the volume of the field by integrating across the world lines corresponding

Let us first study the velocity of propagation of the centre of mass in K. 
From (7.8) we readily find the relation

(7-9)

which in general shows a complicated behaviour for a non-closed system. 
Inserting Abraham’s tensor into the right hand side of eq. (7.9)—and as
suming that corresponding world points in K and K° are connected by the 
invariant (Minkowski) world lines—we find however that the two last terms 
in (7.9) fluctuate away. Moreover, since the field is homogeneous, we find 
from (7.9) the simple relation

(7.10)

By taking into account the result obtained in the previous subsection, we 
thus find that the velocity dXA(K)/dt is different from the velocity of pro
pagation of the total field, i.e. the ray velocity u. This feature severely limits 
the validity of the centre of mass as a representative point if Abraham’s 
tensor is used.

With the radiation tensor we get immediately

(7.11) 
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in accordance with the general equivalence between the radiation tensor and 
the Minkowski tensor with regard to wave propagation properties.

So far having studied the velocity of propagation of the centre of mass 
we now turn our attention to its localization. From the sudy of Minkowski’s 
tensor in I, we recall that the different centres of mass we obtain by varying 
the reference frames K, do not in general coincide when considered simul
taneously in one frame. In fact, we calculated the difference XM(K) - XM, 
where XM denoted the simultaneous position in K of the proper centre of mass. 
The proper centre was defined as the centre of mass in the rest frame A’0, 
i.e. XM(A°) ® XM°. Let us write down again the formula (1, 12.21)

(7.12)

where we now have added a superscript AT
Just the same procedure can now be applied to calculate the position 

X4(A) when Abraham’s tensor is used for the field. In this context we stress 
that corresponding field points in K and A0 are required to be connected by 
the Minkowski world lines, i.e. we simply ignore for a moment the above 
result dXA(K)/dt + u. Since the proper centres coincide in A0, XJ0 = XM°, 
we evidently have also XA = XM in A. We do not give the details of the 
calculation since it is just similar to the calculation carried through in I, 
section 12. The result is

a1 (A) - XJ(A)-X4 = aM(A), (7-13)

showing that Abraham’s tensor yields the same position for the centre of 
mass as Minkowski’s tensor, Xzl(A) = XW(A), if we integrate across the world 
lines determined by

The radiation tensor exhibits very simple features with respect to the 
centre of mass. Since dn(x/lSyCr - xvS^l(7) = 0 it follows that the angular 
momentum quantities M^v constitute a tensor, and by calculating in A 
at t = 0 we readily find that

a‘s(A) = av(A).

(7.14a)

(7.14b)

The equivalence we now have established between the three energy
momentum tensors with respect to the centre of mass is not accidental. It is 
connected with the fact that in (I, 12.12) we introduced the radiation tensor 
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as a formal remedy in order to extend certain volume integrals, taken over 
the internal, plane part of the field, into integrals taken over the whole field. 
In the case of the radiation tensor we could just take advantage of the tensor 
property of M^v. It does not seem, however, that the equivalence could easily 
be foreseen.

The last point we shall dwell on in connection with the study of the 
centre of mass is a comment concerning a result obtained in a basic paper by 
C. Møller<43>. On the basis of some definite assumptions, Møller showed 
that the concept of mass centre for a non-closed system in general is incom
patible with the equations of motion. This result seems to run into conflict 
with the result obtained in the present section, where we have defined the 
centre of mass even for the Abraham field. However, there is no real 
discrepancy between the results, since one of the assumptions inherent in 
Møller’s proof does not apply to the present situation.

Let us point out in detail the mathematical reason for this circumstance. 
At an arbitrary point of the world line of the proper centre (with proper 
time t) Møller assumes that the following relation can be written:

(7-15)

where the integration is taken over a hyperplane a which is normal to the 
world line. The surface pseudo four-vector dov is given by dov = - 
&rCTzkre, <51234 = 1 , where dx/t, ôxa and AxQ are four-vectors lying on a. If a 
is orthogonal to the .r4-axis, we choose the latter three vectors so that the 
non-vanishing component of dav is dcr4 = - idV, when the outward normal 
lies in the direction of the positive .r4-axis. In (7.15) = 3f0(r) is a
proportionality constant.

If we now insert Abraham’s tensor into (7.15) in the frame Æ* where 
the wave is at rest, we find for /z = 4 the relation = M0c2, while for /j, = i 
we find that Mo becomes infinite. This discrepancy shows that an equation 
of the form (7.15) does not apply here. Hence Møller’s proof does not come 
into conflict with the above results in this section. Nor does Minkowski’s 
tensor satisfy the relation (7.15) ,while the radiation tensor does satisfy it.

The Cerenkov effect
As we already have noted, a study of the Cerenkov effect is very in

structive for a comparison between the various energy-momentum tensors. 
In section 5 of the present paper we studied the Cerenkov effect in the case 
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that the emitting particle moves within a medium at rest, and in section 10 
of I we considered the emitting particle in its own rest system from the point 
of view of Minkowski’s tensor. The reason why we shall here consider the 
Cerenkov effect once more, it that we wish to point ont how the relativistic 
theory looks if Abraham’s tensor is used for the field. This kind of analysis 
is desirable, since I. Tamm in his famous paper(44) on the Cerenkov effect 
studied the balance of momentum in the rest frame of the particle and came 
to the conclusion that Minkowski’s tensor, but not Abraham’s tensor, is able 
to give a satisfactory description. We shall thus discuss the momentum 
balance in the Abraham case, since according to our general interpretation 
Mi nkowski’s and Abraham’s tensors ought to be equivalent in such a case.

Consider then the same situation as in I: An electron is moving along 
the x-axis with a uniform velocity which in K° is larger than c/n. The rest 
frame of the particle is denoted by K; as shown by Tamm, H = 0 in K, so 
that there is no Minkowski energy current in this frame. We integrate the 
differential conservation law for momentum over a volume which contains 
the electron and which is enclosed by a cylindric surface S of small radius and 
infinite length such that the axis of the cylinder coincides with the x-axis. 
Since the field is stationary in K, one can thus write, in the case of Min
kowski’s tensor,

Jsgn^ds- (7.16)

which is the same as (I, 10.3).
As Tamm points out, Minkowski’s force must in any case represent the 

force acting on the electric charge, because the terms which are added to 
Minkowski’s tensor in order to form Abraham’s tensor will correspond to 
additional forces acting on the medium itself, and not on the electric charge. 
The total force on the electron as given by the right hand side of (7.16) can 
thus be found by transforming the total force from K° using the usual 
transformation formulas. Now Tamm evaluates the integral on the left hand 
side of (7.16) and verifies that the two sides of the equation are equal. 
Further, since 4= for i = 1 and k = 2, 3, he concludes that a symme
trical “Ansatz“ for S/IV would give a different result in disagreement with the 
force expression on the right hand side of (7.16).

Let us now apply Abraham’s tensor to the present case. Il is instructive to 
write the momentum balance in the form

JSj*tntdS t- f(ff - f")dV ■ - J (7.17)
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and so it appears that the second integral on the left may represent a source 
(or sink) of electromagnetic momentum which also has to be taken into 
account. Since the force on the matter cannot make up an appreciable 
magnitude in a small volume element just enclosing the electron, we can 
exclude this element from the second integration in (7.17) and thus obtain

^SAtntdS +j'ffdV - -$ftMdV, (7.1«)

where j means integration over the remaining part of the volume. However, 

also the second term on the left in (7.18) vanishes due to the rapid oscillation 
of the integrand, so that eqs. (7.18) and (7.16) become identical, i.e. S„ = SA. 
In fact, the relation S™ = Sfk, valid for all combinations of i, k that occur in 
(7,18), can be checked directly by expressing SAk and Sfk in terms of the 
tensor components in K°. Note that it is just the latter relation that represents 
the main reason why the (macroscopic) descriptions corresponding to 
Minkowski’s and Abbau am’s tensors are identical in this case; properties of 
symmetry or asymmetry of the energy-momentum tensors are of no direct 
importance.

In the remainder of the present section we shall be concerned with a 
study of the so-called “principle of virtual power’’. Before embarking upon 
this subject, let us however pause to make the following brief remarks in 
connection with the topics considered in I : In sections 4 and 5 in I we gave 
two sets of conditions from which we showed that Minkowski’s tensor is 
uniquely determined. It shoidd be clear that both these sets of conditions 
automatically exclude from consideration the alternative tensor forms that 
we have been studying: The first set because eqs. (I, 4.1) and (I, 4.2) require 
the tensor to be asymmetric and divergence-free; the second set essentially 
because eq. (I, 5.1) requires the tensor not to contain the four-velocity Vfl 
explicitly (cf. (1.5), (1.7) and the fact that also S?v will contain V/t in a 
complicated way).

In section 10 of I we discussed the negative field energy which appears 
with the use of Minkowski’s tensor in a certain class of inertial systems due 
to the space-like character of the four-momentum G„. This property is 
peculiar to Minkowski’s tensor and is not shared by the other tensor forms. 
We may check by direct calculation that WA > 0 and > 0 in any K, 
while the result Ws > 0 follows immediately from the fact that the four- 
momentum is time-like. If a plane wave moves parallel to the x-axis we 
may conveniently write the total energy density of matter and field as
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VVtot = /(I + 2nß + ß2)WA° + y2Wmech°, (7.19)

where the contributions arising from ^rmech° and Amech° are collected in 
the first term.

Principle of virtual power
Quite recently, P. Penfield and H. A. Haus published a book(45) on the 

electrodynamics of moving media which is a synthesis of work they per
formed with various collaborators; especially the earlier article*46) by Chu, 
Haus and Penfield is of particular interest to us. The authors adopt a 
phenomenological point of view. In addition to employing the usual form
ulation (I, 1.1) of Maxwell’s equations in a moving medium (the Min
kowski formulation), which we also have employed throughout our work, 
they consider the so-called Chu formulation introduced in the book by 
Fano, Chu and Adler*39). It is outside the scope of our work to go into a 
study of the Chu formulation. What really is of interest to us, is that the 
authors, within the frame of the Minkowski formulation, derive an expression 
for the electromagnetic energy-momentum tensor which is equal to Abraham’s 
expression in an isotropic fluid, while Minkowski’s tensor is claimed not to 
describe the electromagnetic system in a meaningful way. We find it there
fore of interest to trace out the reason why the authors have arrived at this 
result. The keystone of the derivation presented is the “principle of virtual 
power’’, invented by the authors, so let us first sketch how the principle 
looks in the present case. An isotropic fluid is considered, where the fluid 
velocity u(r,Z) may be a nonuniform function of the position at a certain 
time. We simplify the formalism (thereby ignoring the dependence of the field 
energy on the material density), and transform it to our notation.

Consider an arbitrary space-time point and denote by A° the inertial 
frame in which the velocity of a fluid element around this point momentarily 
is zero. Thus w° = 0 for the element, but one assumes that virtual deform
ations can be applied to the material to produce arbitrary values of dku^ and 
du^/dt.

Then let K denote the frame in which K° moves with a small velocity u. 
To the first order in u/c we have

St = 5? + + UjW° (7.20a)

W = IV0 + u • + -2 u ■ A0, (7.20b)
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and these equations are introduced into the energy balance

V ■ S + dW/dt = icf4. (7.21)

The authors then let K approach K° so that terms containing u (but not the 
derivatives of w) vanish. The resulting equation is

n 1 n du° d\v° n n n non du°
V ■5’° + — S°------+ ------- + W°v -M0- zc/'S = - S?kdku° - g"-------(7.22)c2 dt dt 14 ik k i s d{ \ j

(note that the differential operators d are not transformed). The es
sential point is now that a knowledge of the physical quantities appearing 
on the left hand side of (7.22), i.e. of S’0, VV° and f\, is claimed to be sufficient 
to provide a determination of the remaining tensor components S®k and g" 
appearing on the right hand side of (7.22). The following expressions are 
chosen :

5° = c(£° x H°) (7.23a)

dW°/dt = E° • dD°/dt + H° • dB^/dt (7.23b)

W° = i(£°-Z>°+-B°), = 0. (7.23c)

The authors now argue that it is convenient to express the lields E°, D°, H°, 
B° appearing in (7.23) in terms of the fields pertaining to the inertial frame 
K before inserting (7.23) into (7.22) (note again that K° means the frame 
where the fluid element momentarily is at rest). By inserting (7.23) into the 
expression on the left hand side of (7.22) they thus obtain

dD dB
c\7-(E x H) + E----- + H------v 7 dt dt

(7-24)

The three first terms add up to zero because of Maxwell’s equations. By 
letting K approach K°, identifying (7.24) with the right hand side of (7.22) 
and taking into account the arbitrariness of the derivatives of u°, the authors 
finally obtain

S°k = - E°D°k - + idik(E° • Z)° + H° • B°) (7.25a)

1
= _(£0 x W). (7.25b)
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This is Abraham’s expression. (Actually, the expression given in ref. 46, 
containing the detailed derivation, was somewhat different from (7.25) but, 
according to a private communication by the authors, this difference is due 
to a printing error.)

If we now proceed to examine this principle of virtual power, we ought 
first to note that one must distinguish between the derivatives of the relative 
velocity v between the frames 7<° and K, and of the fluid velocity u. The 
formulas (7.20) relate the tensor components in the frame K to the tensor 
components in the momentary rest frame K° moving with the constant 
velocity v with respect to K\ although v = u at the space-time point considered 
the corresponding equality between the derivatives is generally not true. 
Thus each of the factors in (7.22) should properly be replaced by 
d^v0, which is zero. In fact, by performing the transformation K -+ K° the 
only result one can obtain is the covariant properties of the conservation 
equations dvS^v = - //z. By starting from the relation (7.21), and assuming 
the velocity v to be small, one will thus end up with the same relation written 
in /<°. If we really subtract the equation V • S’0 + dW°/dt - icf4 = 0 from eq.
(7.22) , we see that obvious inconsistencies will appear in the remaining 
equation if arbitrarily adjustable terms are present.

However, the above remark does not elucidate the essential reason why 
a definite form of the electromagnetic energy-momentum tensor was ob
tained. To this end let us in the following simply assume the validity of eq.
(7.22) as it stands. The essence of the principle of virtual power seems in 
reality to be that one starts from the energy balance (7.21) in K, then trans
forms the field quantities to 7\° and inserts some physical information in 
this frame, and finally transforms back to K. Within the frame of the physical 
information inserted in /<° the formalism can therefore, if it is carried 
through consistently, yield only a mathematical identity. The reason why 
the authors instead obtained Abraham’s expression in (7.25) is that they 
implicitly introduced into the formalism a physical assumption which is 
compatible with Abraham’s tensor, but not with Minkowski’s tensor. Let 
us go into some detail at this point. It is then necessary first to focus our at
tention on the force component /) in (7.21). In the conventional theory f 
transforms like a four-vector, so that, in the limiting case of small u, /4 = /4. 
This equation was used by the authors in the construction of eq. (7.22). 
In particular, if /4 = 0, as assumed in (7.23c), one should obtain /4 = 0 
also in K. However, if we use the covariant expression for S.lv and calcu
late /4 in K according to the basic equation /4 = - dpS4r, we may obtain 
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a different result. For example, both in the Abraham case and the Min
kowski case we know that = 0, while the covariant expressions (1.5) 
and (1.1) yield

ft = /T = ~ i(n2 - V)(E-H)-du/dt (7.26)

to the lowest order. In the Minkowski case there is thus a conflict; it is in
correct to transform f^ as if it were a four-vector.

Due to this peculiar transformation property of (which evidently is 
closely connected with the covariance problem of the conservation equa
tions discussed above), it follows that /) should properly not have been re
placed by /'° in (7.22) but should rather have been retained unchanged. 
Accordingly, it follows that eq. (7.24) implies the relation f’4 = 0. This is a 
choice which, according to (7.26), implicitly singles out Abraham’s tensor. 
The appearance of Abraham’s expression in (7.25) is therefore what we 
should expect. It is also possible to make Minkowski’s tensor emerge from 
the formalism; to this end we must insert the explicit expression for /'Y> 
given by (7.26), into (7.22). Generally speaking, the introduction of a spe
cific expression for /) implicitly implies the acceptance of a specific tensor, 
the remaining formalism thus effectively expressing an identity.

8. Analysis by Means of Curvilinear Coordinates

In connection with the study of the canonical procedure in section 8 of I 
we mentioned that it is possible, in the case of a closed field, to make the 
canonical energy-momentum tensor complete bv means of a symmetrization 
procedure. Now it is well known that in the presence of a gravitational 
field one can obtain the complete energy-momentum tensor directly, without 
having to perform a symmetrization, by means of a variational method 
involving the variation of the metric tensor. Actually, and it is this case 
which is of interest to us, the variational method can be applied also in the 
absence of a gravitational field. Then the transition to curvilinear coordinates 
occurs formally as an intermediate step in the calculation.

Curvilinear coordinates have been used rather extensively in earlier 
studies of the electrodynamics of material media, although one here is 
confronted with a non-closed field. Incorrect use of the variational method 
caused a great deal of confusion in the literature some years ago. The 
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ambiguity inherent in the calculation seems first to have been pointed out by 
J. I. Horvath(47) (see also ref. 48). However, we think that it is still of 
interest to give a careful analysis of the electromagnetic field in terms of 
these coordinates, to point out the detailed reason why the power of the 
variational method is restricted, and to supplement with remarks pertaining 
to alternative variational methods. The main part of the present section is 
devoted to this task. In the last subsection we shall study again the Sagnac- 
type experiment from section 9 of I, in connection with an application of the 
various tensor forms. The cavity frame in this experiment is evidently 
non-inertial.

A variational method
Let us now leave oui the imaginary x4 coordinate and work with the real 

coordinates .r1, a-2, .r3, .r° = ct. The square of the line element is ds2 = 
g^vdx^dxv (g, v running over the numbers 1, 2, 3, 0), whence in Galilean 
coordinates . . a

.<7n = 922 = 922 = 1» f/oo = ~ 1 I , \
I Ço.1)

9 = (^9[iv = - h 9fiv = 0 for F * I
Further, in Galilean coordinates,

E = (-^10’ ^20’ ^3o)> = (^23’ ^31’ ^12) I 9
= (^10’ ^20’ ^30)’ H = (H23, ff31, H12), J

and the connection between field and potentials is in general

[tv = [i^v ~ = [i Ay — dp-Ayi, (8.3)

as the covariant derivative V/z can be replaced by the ordinary derivative 
when F//v is antisymmetric.

For a radiation field Maxwell’s equations take the form

[iv + ^[i^vÅ “*■ ^v^Å[t = ^.h [tv L ^[t^vÅ + ~ 0 (8.4a)

= -L^d^-gH^) = 0. (8.4b)

f - 9

We have here assumed arbitrary coordinates where the g^v are given 
functions of the coordinates. Then proceed to determine the constitutive 
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relations. We shall keep the formalism so general that it includes the case of 
an anisotropic dielectric medium, bul we shall assume magnetic isotropy 
with /z = 1. (The procedure runs similarly, however, also if gik is a tensor.) 
Introducing in the small region around each point a local rest system of 
inertia K with the metric tensor given by (8.1), we may write

^0 -

Moreover, in K we introduce the quantities 

Eq = e£ = 0 (n = 1, 2, 3, 0)

(8.5)

(8-6)

and let in the arbitrary coordinate system the symmetric tensor e^v be 
defined in such a way that its mixed components in K coincide with e^ 
given by (8.5) and (8.6). The constitutive relations written in covariant form 
are then

H'IV = F^v + - ^Fa)Vv -\(FV - ev<xFa)V'1, (8.7)

Mat.Fys.Medd.Dan.Vid.Selsk. 37, no. 13.

c“5

where Fa = FxßV^, and is the four-velocity of the medium. In isotropic 
media eq. (8.7) can be written

H^v = F^v - x(F^Vv - FvV^), x = (e- V)lc2. (8.8)

This relation between (8.7) and (8.8) can readily be verified, since for an 
isotropic body in K

e^Fx = e%Fx = êgÇF“ = eF^. (8.9)

Here g% is the metric tensor in Galilean form and e is the dielectric constant 
in K. Note that Eq = 0 according to (8.6) while g® = 1 ; however, this does 
not matter, since F° = 0. Writing (8.9) covariantly as e^F^ = eF^, we 
obtain (8.8) from (8.7). Thus, while E^a in (8.7) is a tensor, the trans
formation (8.9) in the case of isotropic media causes the dielectric constant 
in (8.8) to be treated as a four-dimensional scalar.

It can be verified that an appropriate Lagrangian is

L - -

- + - io + E + L".
(8.10)

5
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Multiplying with the pseudo-invariant [/- gdx = |/- g dxx dx-dx^dx^ and inte
grating over a region 27 in four-space lying between two space-like surfaces 
and extending to infinity in the space directions, we get the action integral

J = ^L(x)j/~ gdx = J=5f(.r)d.r. (8.11)

2? 27

Since (8.10) corresponds to the field and its interaction with the matter, a 
variation of (8.11) with respect to the potentials will yield lhe field equations 
(8.4b). However, we are primarily interested in the invariance property of J 
under coordinate transformations.

Let an infinitesimal coordinate transformation be given by x'^ = x/l + 
ôx^ = a.'1“ + where the are small, but arbitrary functions of the coor
dinates, so that terms quadratic in may be neglected. The corresponding 
change of (8.11) is

ÔJ = [ (x')dx' - JJ?(.r)d.r. (8.12)

27' 27

By transforming this expression and using the assumption that vanish on 
the boundary, we obtain(8>

ÔJ = Jd:i:2^(.r) t/.r = 0, (8.13)

27

where ô'-\&(x) = £?'(x) - ^f(x) is the local variation. Eq. (8.13) has the form 
of a variational principle even though L does not correspond to a closed 
system; only it must be remembered that all variations are generated by the 
infinitesimal coordinate transformations.

We proceed then to calculate these variations. By a vector trans
formation we find

V'^x') = dvx’^Vv{x) = (< + dv^)Vv(x-), (8.14)
whence

dn^(.r) = r(x)dv^-^^v^(x) = (8.15)

Here we have for example + 77^ V“, where I^za is the Christof-
fel symbol. It appears that is a four-vector, as should be the case, 
since this variation is the difference of the values of two four-vectors at the 
same point. Correspondingly for the potentials

- --4,v^r-^vp.4M. (8.16)
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The g^v will also be all'ected by the coordinate transformation, and we have

^(x) = = g^{x) + g^d^v + gvctd^. (8.17)
Thus

ôV’Xæ) = g'^Çx') - - êada^(æ) = + V”^. (8.18)

Similarly
<5*e^ = e^aVa^ + eraVK^ - ^Va^. (8.19)

The part Jo of the action integral corresponding to Lo in (8.10) is to be 
varied with respect to and g^v. This term is present also in the case of an 
electromagnetic field in vacuum. One obtains after some calculation (for 
details, see Fock<49), §§ 47, 48)

0J0 = - i J (T^F/ - - gdx

- jVvF^v ô*A^j/- gdx. (8.20)

Here use has been made of the relations <5*|/- g = - i|/~ 
g^vô*g^lv = - g^và^g^v. By virtue of (8.18) the first term in (8.20) can be 
transformed, so that

ÔJ„ - (8.21)

We shall now give the detailed calculation for the action term J' corres
ponding to 7/ in (8.10). Variations are here to be taken with respect to 
A1“, g^v and VF Let us first calculate the contribution from the potentials and 
write
W - - f- -4|>V“(d,(<5*Aa-d^A^—gdx,

since and d* commute. By partial integrations then

bAJ' = - 4Jvv(F^Vv - FvV^Ô*A^~gdx, (8.22)

where we have exploited the antisymmetry property of the expression in the 
parenthesis.

The variation with respect to the metric tensor is handled in the same 
way, and we get by means of (8.18)

5*
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àgJ' = - 2'2 JFtiFv^- 9^9^ - ik “ 99flv9aßö*9Ctß}dx

“ - |J(8 23)
-|J{vJ(f/zf«-j^fV]

- Va (F^ Fa - 4 g* Fß F?) J/ - g dx.

Since the first term in this expression involves the covariant derivative of the 
product of a scalar and a four-vector, we can write this term as

- IJ 9(F„F“ - (8-24)

and transform into an integral over the boundary. Therefore this term 
vanishes. It remains

àgJ' = ^Jvr(F^Fr-|^FaFa)^|/-øcte. (8.25)

Finally we consider the variations connected with the velocity. By means 
of (8.15) we have

<W' - -|jFajUFa(V’’V,,f'‘-£,’V,,O‘)|/^<te. (8.26)

Performing a partial integration we obtain, apart from an integral similar to 
(8.24)

<W' “ “ IJ lV-<W‘V’’> + V“ VW~ (8-27) 

Similarly we can evaluate the contributions from the term L" in (8.10). 
We give the results:

6AJ" -|JvJ(^“V’’-£raV'I)Fa]<5MM|/^dx (8.28a)

<5,./" - (8.28b)

<W” - - IJ [VX^F^^V”) + (8.28c)
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V ( Ffi Fa) + FV Fa ]/- 9 dæ- (8.28(1)

In the last equation we have made use of (8.19).
Now we are able to write down the total variation ÔJ, where ô = ôA + 

ôg + + ôE. We obtain

(8.29)

In this relation (5*A^ and are not independent, but related through (8.16). 
However, we do not have to express <5*A/Z by in (8.29) since we know 
that L is the Lagrangian for the field in interaction with the medium. There
fore the coefficient of <5*A„ must be equal to zero, as we also see by virtue 
of (8.7) and (8.4b).

Now the are arbitrary at each point. This means that during the 
displacement period the dielectric in general will not move as a rigid body, 
but the bulk density will vary throughout the body. However, even under 
this deformation process the Lagrangian (8.10) is permitted, since Max
well’s equations are assumed to be valid within the body also when it 
becomes inhomogeneous, with the small velocity changes that appear 
because of the deformations. So Maxwell’s equations do not restrict the 
variations and we obtain from (8.29)

where

M 1 1V„s/ - -2F„(F“ - A>)v„ V” + (8.30)

.W

is Minkowski’s tensor. We now introduce Galilean coordinates and use 
that dflVv = 0 for the undisturbed body, whence

(8.31)
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We should like to mention the possibility of requiring the body to move 
as a rigid body under the deformation period in some coordinate system. 
Then the variations of one world line can be chosen arbitrarily, but the 
variations on the surface I = constant will now be determined by the metric 
tensor. Because of the relativity of simultaneity however, deformations will 
in general occur in another coordinate system. Besides, this type of variation 
does not lead to the strong result (8.30). To see this, let us confine ourselves 
to Galilean coordinates, in which the restriction reads £fl = constant on an 
arbitrary hypersurface t = constant in some inertial system. If we let %fl 
mean the difference between the left and the right sides of (8.31), we can 
write (8.29) as 

0 (8.32)

from which we can only conclude that the volume integral d3.r//z = 0.

Let us now return to the main result (8.31) emerging from the formalism. 
It should be clear that this result is only a certain combination of Maxwell’s 
equations. We could equivalently write eq. (8.31) in terms of Abraham’s 
tensor, or any other expression. Apart from the statement of the Lagrangian 
(8.10), the subsequent calculation is of merely mathematical nature.

The present behaviour arises from the fact that the Lagrangian (8.10) 
does not describe the total physical system. If the Lagrangian had been 
complete, then we could further have reduced the expression for the 
variation of the action integral in view of the mechanical equations of 
motion, and would have been left with the total energy-momentum tensor as 
a result of the remaining variations. In some earlier treatments the elec
tromagnetic energy-momentum tensor was claimed to be determined simply 
by the variation of the action integral with respect to the metric tensor. As 
mentioned above, Horvath(47, 48) has emphasized the ambiguity of such a 
procedure. Further, H. G. Sciiöpe(50) has objected against certain calcul- 
ational inconsistencies in the earlier attempts. The works of Horvath and 
Schöpf contain references to the preceding literature.

In the treatment up till now we have generated all variations from 
coordinate transformations, since this seems to be the simplest kind of 
approach. However, one will commonly find another method used in order 
to calculate the variation of the velocity (3> 50) 51). Namely to preserve the 
relation

l',< V’“ = - c2 (8.33)
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also after the variation, one introduces Lagrange variables a (Â = 1, 2, 3, 0) 
to describe the medium, where a0 = p is an arbitrary invariant parameter of 
the nature of a time. Then, writing

v„ _ cdx^/dp (8 34)
[/- gxß dxx/dpdxß/dp

the relation (8.33) is identically satisfied. But when evaluating the variation 
of Vfl given by (8.34), the change in the gyß must also be taken into account. 
In this way the are considered as arbitrary. However, we see that this 
procedure is necessary only if the Lagrangian obeys an action principle 
with respect to the x^1. In the case of an electromagnetic field in vacuum 
interacting with incoherent matter, as treated by Fock<49) for example, the 
given Lagrangian corresponds to the total system and must therefore yield 
the equations of motion of matter when the arbitrary ^-variations are taken 
in a fixed system of reference. Therefore one must take the restriction given 
by (8.33) into account, for instance by the parametrical representation 
(8.34). Another method has been given by L. Infeld<52, 53); the method 
consists in introducing a Lagrangian multiplier Â to take care of the degree 
of freedom being lost by (8.33).

In our case, the Lagrangian L given by (8.10) obeys an action principle 
only with respect to the potentials; the ^“-variations are consequences of 
coordinate transformations which preserve the condition (8.33) auto
matically. Therefore no attention was paid to the restriction (8.33) in the 
calculation above. But it is not incorrect to use the representation (8.34). 
We then obtain instead of (8.15) the velocity variation

(8.35) 
c

when the change in the gxß is taken into account. However when evaluating 
the ^-variations, we vary also the gy_ß in (8.34), so that

= - ~VtlVoVvà*9vn = ~ (8.36)

where (8.18) has been inserted. We see that in the total velocity variation 
(3'* + the expression (8.36) compensates the last term in (8.35), so 
that we end up with a certain combination of Maxwell’s equations, as 
before.
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Similarly, by using Infeed’s method, the multiplier A drops out of the 
calculation.

We mention that in the case of isotropic media (fluids) some at- 
tempts<54’ 50) have been made to complete the Lagrangian so as to make 
the system closed. In such a case the Lagrangian has to obey a variational 
principle also with respect to coordinate variations, so that one may use the 
representation (8.34). In this way the total energy-momentum tensor has 
been found to be given by Abraham’s tensor plus the hydrodynamical tensor.

The consistency of such a procedure may be illustrated by the following 
consideration. We first tentatively write the Lagrangian density for the 
total system as

+ («-37)

where x = (n2 - l)/c2, F/t = 7ÿ/vVrV, and om is the invariant rest mass density 
of the fluid. If we now perform coordinate variations (for fixed metric) and 
evaluate the contribution to the action integral which arises from (he second 

term to the right in (8.37), we find the expression gdr due to the

velocity variations (8.35). Here /'j' means Abraham’s force density written 
in general coordinates. Therefore the coordinate variations, which effect 
only the two last terms in (8.37), lead to the hydrodynamical equations of 
motion with Abraham’s force as the external force. This result is compatible 
with the interpretation we found in section 3, and this is the crucial point, 
since it permits the adoption of (8.37) as the correct Lagrangian density 
for the total system. If we then perform an infinitesimal coordinate trans
formation so that the action integral remains invariant, we see that the 
coefficients in front of and vanish in view of the field equations and 
the equations of motion, so that we are left with a divergence-free total 
energy-momentum tensor in front of à'-gllv which is equal to the sum of 
Abraham’s tensor and the hydrodynamical tensor.

Note that the present direct connection between the variation of the 
metric tensor and the energy-momentum tensor, and between the remaining 
variations and the equations of motion, is lost if we employ our first method 
and generate all variations from coordinate transformations. Thus, if we 
use the Lagrangian (8.10), a variation of the action integral (8.11) with 
respect to the metric tensor leads to Abraham’s tensor only if both (8.18) 
and (8.36) are taken into account. However, in order to analyse how the 
conservation equations emerge from the formalism when (8.10) is used, our 
first method is simpler.
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Final remarks on the Sagnac-type experiment
The last task that we shall take up in our work is to give an extended 

analysis of the recent Sagnac-type experiment due to Heer, Little and 
Bupp(55) which we considered in sect. 9 of I in connection with Minkowski’s 
tensor. We shall examine how this experiment is explained by the other 
tensors.

Let us briefly recall the essential features of the experiment. The 
apparatus is a triangular ring laser giving rise to two travelling electro
magnetic waves in the cavity, one circulating clockwise and the other 
counterclockwise. A dielectric medium is placed in the light path. When the 
system is at rest the photon frequencies in the two wave modes are equal. 
If the cavity is set into rotation with an angular velocity £?, the photon 
frequencies of the two beams become different from each other and the 
beams interfere to produce beats which are counted. With Minkowski’s 
tensor the energy density \VM for one of the modes in the noninertial cavity 
frame is related to the energy density W° for this mode in an instantaneous 
inertial rest frame by

WM = W° + -ß • [r x (Ex H)], (8.38)
c

where the fields refer to the mode considered, and are evaluated for Q = 0 
since only effects to the first order in £? are investigated. Further, within this 
approximation the total field energy in the cavity frame is a conserved 
quantity, so that we obtain the formula (I, 9-6) for the relative frequency 
shift .

/Av\m ‘ \ r x (E x H)dV
- H-f-2------------ • <8’39>\v / c \ (E ■ D + H ■ B)dV

In the plane wave approximation the agreement between (8.39) and the 
observed data is excellent, and the authors conclude that lheir experiment 
supports the asymmetric Minkowski’s tensor.

As we shall see now, the above conclusion should be somewhat modified: 
The experiment represents a nice verification of the predictions of pheno
menological electrodynamics, but it is not a critical test of the convenience of 
Minkowski’s tensor as compared to all other tensor forms. In fact, both 
Abraham’s tensor and the radiation tensor give an equivalent description of 
the experiment. For we have in any case, to the first order in Q, the following 
formula for the energy density in the cavity frame:
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W = W0 + ^-k-S4k, (8.40)
.944

where g.lv is the metric tensor in the cavity frame and the superscript zero 
refers to the instantaneous rest inertial frame. Since the tensor components 
S4V are equal for Minkowski’s and Abraham’s tensors and also for the radi
ation tensor, we must obtain the same value for W. Therefore, in any of 
these cases, we can put the conserved total field energy of each mode propor
tional to the corresponding photon frequency, and obtain again the funda
mental formula (8.39).

Note that the equivalence of the above three tensors with respect to the 
energy balance in the cavity frame holds for all participating terms. The 
energy balance reads in general

v,V “ = -/4, (8.41)
[ - g ox K

but it can be verified that the term involving the Christoffel symbol 
yields no contribution to the first order in P. Moreover, by performing a 
coordinate transformation between the inertial frame and the cavity frame 
we find that /4 = 0, even in the Abraham case, and that the components S4* 
take on common values. In all the three cases considered we can thus write 
the energy balance as dvS4v = 0, with common values for the tensor 
components.

Finally we note that with the de Groot-Suttorp tensor (1.9), complic
ations arise because the expression for W° is changed. In this case the force 
component f4 is different from zero, yet the total field energy is a conserved 
quantity in the cavity frame since /4 fluctuates away when integrated over 
the volume. However, we do not now obtain the expression (8.39) for the 
relative frequency shift; in fact, if we put the total energy proportional 
to the photon frequency for each mode we find the formula (Jp/p)G = 
(^m7^g°)(ZId/d)m, in disagreement with experiment. This tensor seems in 
general not to be suitable for the description of propagating waves, since in 
an inertial rest frame the magnitude of the quantity SG°I\VG° is different 
from c/n.
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Appendix

The table below gives a summary of the behaviour of the various energy
momentum tensors in those examined physical situations which are of 
experimental interest. References are given to those sections of Part I or 
Part II where the actual subject has been investigated. Cf. also the summaries 
in the introductory sections of I and II.
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Situation considered a) Minkowski b) Abraham c) Radiation tensor 
(Marx et al ; Beck)

d) Ein
stein
- Laub

e) de 
Groot- 
Suttorp 
(first 
version)

Dielectric isotropic 
or anisotropic body 
surrounded by a va
cuum or isotropic li
quid and acted upon 
by an electrostatic 
field : Measurement 
of force or torque.

Within an anisotro
pic body the tensor 
asymmetry is of main 
importance for the 
torque. I, sect. 3; II, 
sect. 2.
No experimental dist 
sect. 2.

Torque always de
scribed in terms of 
the force.
II, sect. 2.

inction possible. II,

Not defined in this
case.

Same experimental 
result as in the cases 
a) and b). II, sect. 2.

Excess pressure pro
duced in a dielectric 
liquid by an electro
static field: Hakim- 
Higham experiment.

In this case the electrostrictive terms 
must be taken into account. Thereby one 
obtains a tensor which yields Helmholtz’ 
force, and which is in agreement with the 
second tensor form put forward by de 
Groot and Suttorp. Good agreement with 
experiment. II, sect. 2.

Not defined in this 
case.

Force density equal 
to Kelvin’s force. 
Disagreement with 
experiment. II, 
sect. 2.

Radiation pressure 
exerted by an elec
tromagnetic wave 
travelling through a 
dielectric liquid: 
Jones-Richards ex
periment.

Good agreement with 
experiment. Simple 
interpretation. I, 
sect. 6; II, sect. 3.

Equivalent to case 
a), when the appro
priate interpretation 
is imposed. II, sect. 3.

Disagreement with 
experiment. II, 
sect. 3.

Inconvenient.

Dielectric isotropic 
or anisotropic body 
surrounded by a va
cuum and acted upon 
by a high-frequency 
field : Measurement 
of force or torque 
(Barlow’ experiment, 
Beth experiment, 
etc.).

No experimental distinction possible. II, 
sect. 4.

Defined for isotropic 
media only. Same 
experimental result 
as in the cases a) and 
b), although the 
direction and magni
tude of the surface 
force in general are 
different. II, sect. 4.

Same experimental 
result as in the cases 
a)-c).

Dielectric isotropic 
or anisotropic body 
surrounded by a li
quid and acted upon 
by a high-frequency 
field: Measurement 
of force or torque 
(experiment not per
formed).

No experimental distinction possible. II, 
sect. 4.

Experiment of the 
Barlow type should 
represent a critical 
test. II, sect. 4.

Experiment of the 
Barlow type should 
also here be critical. 
The torque formula 
is different from the 
formulas correspond
ing to the cases a)-c). 
II, sect. 4.
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Situation considered a) Minkowski b) Abraham c) Radiation tensor 
(Marx et al ; Beck)

d) Ein
stein- 
Laub

e) de 
Groot- 
Suttorp 
(first 
version)

Low-frequency vari
ation of electric and 
magnetic fields : Mea
surement of oscilla
tions of a suspended 
dielectric shell (expe
riment not perfor
med).

Does not predict 
oscillations.
The equivalence betv 
not apply to this ca 
distinction should be

Predicts oscillations.

,'een the tensors does 
se. An experimental 
possible. II, sect. 4.

Same behaviour as 
sect. 4.

in the case b). II,

Cerenkov effect. Good agreement with 
the experiments. 
Simple interpreta
tion. I, sect. 10; II, 
sect. 5 and 7.

Equivalent to case 
a), when the appro
priate interpretation 
is imposed. II, sect. 5 
and 7.

Leads to unphysical 
value for the Ceren
kov angle. II, sect. 5.

Inconvenient.

Velocity of the ener
gy of an optical wave 
in a uniformly mov
ing body: Fizeau 
type experiments.

Good agreement with 
the experiments. The 
von Laue-Moller 
transformation cri
terion is fulfilled. I, 
sect. 9; II. sect. 7.

Equivalent to case 
a), when the appro
priate interpretation 
is imposed, 11, sect. 7.

Same behaviour as 
in the case a).

Inconvenient.

Sagnac-type experi
ment performed by 
Heer, Little, Bupp.

Good agreement with experiment. I, sect. 9; II, sect. 8. Inconvenient.
II, sect. 8.
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